These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15347560)

  • 41. Astragalus polysaccharides exert protective effects in newborn rats with bronchopulmonary dysplasia by upregulating the expression of EGFL7 in lung tissue.
    Wang XH; Huang WM
    Int J Mol Med; 2014 Dec; 34(6):1529-36. PubMed ID: 25270395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effects of prolonged exposure of high concentration of oxygen on expression of vascular endothelial growth factor and its receptors in neonatal rat lungs].
    Feng HY; Lu AZ; Zhang XB; Wang LB; Chen C
    Zhongguo Dang Dai Er Ke Za Zhi; 2009 Nov; 11(11):927-30. PubMed ID: 20113663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Increased apoptosis after intra-amniotic endotoxin priming plus hyperoxic exposure in lungs of preterm newborn rats].
    Wang W; Yu X; Ning Q; Luo XP
    Zhonghua Er Ke Za Zhi; 2009 Oct; 47(10):767-73. PubMed ID: 20021812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. IL-1beta disrupts postnatal lung morphogenesis in the mouse.
    Bry K; Whitsett JA; Lappalainen U
    Am J Respir Cell Mol Biol; 2007 Jan; 36(1):32-42. PubMed ID: 16888287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of retinoic acid on oxygen-induced lung injury in the newborn rat.
    Ozer EA; Kumral A; Ozer E; Duman N; Yilmaz O; Ozkal S; Ozkan H
    Pediatr Pulmonol; 2005 Jan; 39(1):35-40. PubMed ID: 15532102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats.
    Zhang H; Fang J; Su H; Yang M; Lai W; Mai Y; Wu Y
    Pediatr Transplant; 2012 Sep; 16(6):589-98. PubMed ID: 22738184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of pulmonary neutrophils in the adult and neonatal rat after hyperoxia.
    Keeney SE; Mathews MJ; Haque AK; Schmalstieg FC
    Pediatr Res; 1995 Dec; 38(6):857-63. PubMed ID: 8618785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in pulmonary tissue structure and KL-6/MUC1 expression in a newborn rat model of hyperoxia-induced bronchopulmonary dysplasia.
    Zhu Y; Fu J; You K; Jin L; Wang M; Lu D; Xue X
    Exp Lung Res; 2013 Dec; 39(10):417-26. PubMed ID: 24298937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Administration of bovine superoxide dismutase fails to prevent chronic pulmonary sequelae of neonatal oxygen exposure in the rat.
    Shaffer SG; O'Neill DH; Thibeault DW
    J Pediatr; 1987 Jun; 110(6):942-6. PubMed ID: 3647125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intra-alveolar macrophage-inflammatory peptide 2 induces rapid neutrophil localization in the lung.
    Gupta S; Feng L; Yoshimura T; Redick J; Fu SM; Rose CE
    Am J Respir Cell Mol Biol; 1996 Nov; 15(5):656-63. PubMed ID: 8918372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CXCR2 inhibition suppresses hemorrhage-induced priming for acute lung injury in mice.
    Lomas-Neira JL; Chung CS; Grutkoski PS; Miller EJ; Ayala A
    J Leukoc Biol; 2004 Jul; 76(1):58-64. PubMed ID: 15123771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The protective effect of CXC chemokine receptor 2 antagonist on experimental bronchopulmonary dysplasia induced by postnatal systemic inflammation.
    Lee SH; Choi CW
    Clin Exp Pediatr; 2021 Jan; 64(1):37-43. PubMed ID: 32683807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A critical role for the IL-1 receptor in lung injury induced in neonatal rats by 60% O2.
    Johnson BH; Yi M; Masood A; Belcastro R; Li J; Shek S; Kantores C; Jankov RP; Tanswell AK
    Pediatr Res; 2009 Sep; 66(3):260-5. PubMed ID: 19542903
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Granulocyte independence of pulmonary oxygen toxicity in the rat.
    Boyce NW; Campbell D; Holdsworth SR
    Exp Lung Res; 1989 May; 15(3):491-8. PubMed ID: 2743954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of the CXCR2 antagonist AZD5069 on lung neutrophil recruitment in asthma.
    Watz H; Uddin M; Pedersen F; Kirsten A; Goldmann T; Stellmacher F; Groth E; Larsson B; Böttcher G; Malmgren A; Kraan M; Rabe KF
    Pulm Pharmacol Ther; 2017 Aug; 45():121-123. PubMed ID: 28549850
    [No Abstract]   [Full Text] [Related]  

  • 56. Mechanisms and limits of induced postnatal lung growth.
    ad hoc Statement Committee, American Thoracic Society
    Am J Respir Crit Care Med; 2004 Aug; 170(3):319-43. PubMed ID: 15280177
    [No Abstract]   [Full Text] [Related]  

  • 57. Macromolecular synthesis in organ cultures of neonatal rat lung.
    Hussain MZ; Belton JC; Bhatnagar RS
    In Vitro; 1978 Sep; 14(9):740-5. PubMed ID: 569124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Postnatal growth of the mammalian lung: lack of influence by carbon monoxide exposure.
    Bartlett D
    Respir Physiol; 1975 Apr; 23(3):343-9. PubMed ID: 1144947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of immune cell recruitment and BPD development.
    Heydarian M; Schulz C; Stoeger T; Hilgendorff A
    Mol Cell Pediatr; 2022 Aug; 9(1):16. PubMed ID: 35917002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular and molecular responses to lung injury in relation to induction of tissue repair and fibrosis.
    Finkelstein JN; Horowitz S; Sinkin RA; Ryan RM
    Clin Perinatol; 1992 Sep; 19(3):603-20. PubMed ID: 1526074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.