BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 15347581)

  • 1. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
    Shannon TR; Wang F; Puglisi J; Weber C; Bers DM
    Biophys J; 2004 Nov; 87(5):3351-71. PubMed ID: 15347581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
    Greenstein JL; Winslow RL
    Biophys J; 2002 Dec; 83(6):2918-45. PubMed ID: 12496068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac systems biology and parameter sensitivity analysis: intracellular Ca2+ regulatory mechanisms in mouse ventricular myocytes.
    Shin SY; Choo SM; Woo SH; Cho KH
    Adv Biochem Eng Biotechnol; 2008; 110():25-45. PubMed ID: 18437298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes.
    Sheehan KA; Blatter LA
    J Physiol; 2003 Jan; 546(Pt 1):119-35. PubMed ID: 12509483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium buffering and excitation-contraction coupling in developing avian myocardium.
    Creazzo TL; Burch J; Godt RE
    Biophys J; 2004 Feb; 86(2):966-77. PubMed ID: 14747332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moment closure for local control models of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2008 Aug; 95(4):1689-703. PubMed ID: 18487291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes.
    Zima AV; Kockskämper J; Blatter LA
    J Physiol; 2006 Nov; 577(Pt 1):281-93. PubMed ID: 16945967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2007 Apr; 92(7):2311-28. PubMed ID: 17237200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of Ca2+-activated Cl- current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca2+ dynamics.
    Leem CH; Kim WT; Ha JM; Lee YJ; Seong HC; Choe H; Jang YJ; Youm JB; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1223-43. PubMed ID: 16608705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes.
    Hinch R; Greenstein JL; Tanskanen AJ; Xu L; Winslow RL
    Biophys J; 2004 Dec; 87(6):3723-36. PubMed ID: 15465866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling.
    Korhonen T; Rapila R; Tavi P
    J Gen Physiol; 2008 Oct; 132(4):407-19. PubMed ID: 18794378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel computational model of the human ventricular action potential and Ca transient.
    Grandi E; Pasqualini FS; Bers DM
    J Mol Cell Cardiol; 2010 Jan; 48(1):112-21. PubMed ID: 19835882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models.
    Iribe G; Kohl P
    Prog Biophys Mol Biol; 2008; 97(2-3):298-311. PubMed ID: 18395247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EAD and DAD mechanisms analyzed by developing a new human ventricular cell model.
    Asakura K; Cha CY; Yamaoka H; Horikawa Y; Memida H; Powell T; Amano A; Noma A
    Prog Biophys Mol Biol; 2014 Sep; 116(1):11-24. PubMed ID: 25192800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle.
    Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ
    J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.
    Harris DM; Mills GD; Chen X; Kubo H; Berretta RM; Votaw VS; Santana LF; Houser SR
    Circ Res; 2005 Mar; 96(5):543-50. PubMed ID: 15705962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control.
    Snyder SM; Palmer BM; Moore RL
    Biophys J; 2000 Jul; 79(1):94-115. PubMed ID: 10866940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes.
    Litwin SE; Li J; Bridge JH
    Biophys J; 1998 Jul; 75(1):359-71. PubMed ID: 9649393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.