These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15347746)

  • 1. New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae.
    Folch-Mallol JL; Martínez LM; Casas SJ; Yang R; Martínez-Anaya C; López L; Hernández A; Nieto-Sotelo J
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2865-2879. PubMed ID: 15347746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation.
    Belotti F; Tisi R; Martegani E
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1231-1242. PubMed ID: 16549685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation.
    Paiardi C; Belotti F; Colombo S; Tisi R; Martegani E
    FEMS Yeast Res; 2007 Dec; 7(8):1270-5. PubMed ID: 17727662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae.
    Gross A; Winograd S; Marbach I; Levitzki A
    Biochemistry; 1999 Oct; 38(40):13252-62. PubMed ID: 10529198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription.
    Rudoni S; Mauri I; Ceriani M; Coccetti P; Martegani E
    Int J Biochem Cell Biol; 2000 Feb; 32(2):215-24. PubMed ID: 10687955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The overexpression of the 3' terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools.
    Frascotti G; Coccetti P; Vanoni MA; Alberghina L; Martegani E
    Biochim Biophys Acta; 1991 Jun; 1089(2):206-12. PubMed ID: 1647210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein.
    Munder T; Küntzel H
    FEBS Lett; 1989 Jan; 242(2):341-5. PubMed ID: 2536619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation.
    Boy-Marcotte E; Ikonomi P; Jacquet M
    Mol Biol Cell; 1996 Apr; 7(4):529-39. PubMed ID: 8730097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At acidic pH, the diminished hypoxic expression of the SRP1/TIR1 yeast gene depends on the GPA2-cAMP and HOG pathways.
    Bourdineaud JP
    Res Microbiol; 2000; 151(1):43-52. PubMed ID: 10724483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae.
    Wang L; Renault G; Garreau H; Jacquet M
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3383-91. PubMed ID: 15470116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.
    Satomura A; Miura N; Kuroda K; Ueda M
    Sci Rep; 2016 Mar; 6():23157. PubMed ID: 26984760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    van Aelst L; Jans AW; Thevelein JM
    J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae.
    Geymonat M; Wang L; Garreau H; Jacquet M
    Mol Microbiol; 1998 Nov; 30(4):855-64. PubMed ID: 10094633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels.
    Oehlen LJ; Scholte ME; de Koning W; van Dam K
    J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator.
    Martegani E; Vanoni M; Zippel R; Coccetti P; Brambilla R; Ferrari C; Sturani E; Alberghina L
    EMBO J; 1992 Jun; 11(6):2151-7. PubMed ID: 1376246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport.
    Silljé HH; ter Schure EG; Verkleij AJ; Boonstra J; Verrips CT
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1765-73. PubMed ID: 8757740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae.
    Damak F; Boy-Marcotte E; Le-Roscouet D; Guilbaud R; Jacquet M
    Mol Cell Biol; 1991 Jan; 11(1):202-12. PubMed ID: 1986220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest.
    Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P
    Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast.
    Belotti F; Tisi R; Paiardi C; Groppi S; Martegani E
    FEBS Lett; 2011 Dec; 585(24):3914-20. PubMed ID: 22036786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae.
    Van Aelst L; Boy-Marcotte E; Camonis JH; Thevelein JM; Jacquet M
    Eur J Biochem; 1990 Nov; 193(3):675-80. PubMed ID: 2174363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.