BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15347752)

  • 1. Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1.
    Dubbels BL; DiSpirito AA; Morton JD; Semrau JD; Neto JNE; Bazylinski DA
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2931-2945. PubMed ID: 15347752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A permease-oxidase complex involved in high-affinity iron uptake in yeast.
    Stearman R; Yuan DS; Yamaguchi-Iwai Y; Klausner RD; Dancis A
    Science; 1996 Mar; 271(5255):1552-7. PubMed ID: 8599111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae.
    Dancis A
    J Pediatr; 1998 Mar; 132(3 Pt 2):S24-9. PubMed ID: 9546033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae.
    Askwith C; Kaplan J
    J Biol Chem; 1997 Jan; 272(1):401-5. PubMed ID: 8995275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2.
    Bazylinski DA; Dean AJ; Williams TJ; Long LK; Middleton SL; Dubbels BL
    Arch Microbiol; 2004 Nov; 182(5):373-87. PubMed ID: 15338111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
    Hassett R; Dix DR; Eide DJ; Kosman DJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):477-84. PubMed ID: 11023834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport.
    Spizzo T; Byersdorfer C; Duesterhoeft S; Eide D
    Mol Gen Genet; 1997 Nov; 256(5):547-56. PubMed ID: 9413439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport.
    Dancis A; Yuan DS; Haile D; Askwith C; Eide D; Moehle C; Kaplan J; Klausner RD
    Cell; 1994 Jan; 76(2):393-402. PubMed ID: 8293472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism.
    Boll M; Fuchs G
    Eur J Biochem; 1998 Feb; 251(3):946-54. PubMed ID: 9490071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
    Hall SJ; Hitchcock A; Butler CS; Kelly DJ
    J Bacteriol; 2008 Dec; 190(24):8075-85. PubMed ID: 18931123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae.
    Shi X; Stoj C; Romeo A; Kosman DJ; Zhu Z
    J Biol Chem; 2003 Dec; 278(50):50309-15. PubMed ID: 12954629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.
    Askwith C; Eide D; Van Ho A; Bernard PS; Li L; Davis-Kaplan S; Sipe DM; Kaplan J
    Cell; 1994 Jan; 76(2):403-10. PubMed ID: 8293473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Candida albicans CTR1 gene encodes a functional copper transporter.
    Marvin ME; Williams PH; Cashmore AM
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1461-1474. PubMed ID: 12777486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic approach to elucidating eukaryotic iron metabolism.
    Klausner RD; Dancis A
    FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.
    di Patti MC; Pascarella S; Catalucci D; Calabrese L
    Protein Eng; 1999 Nov; 12(11):895-7. PubMed ID: 10585494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system.
    Paronetto MP; Miele R; Maugliani A; Borro M; Bonaccorsi di Patti MC
    Arch Biochem Biophys; 2001 Aug; 392(1):162-7. PubMed ID: 11469807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related.
    Dorsey CW; Tomaras AP; Connerly PL; Tolmasky ME; Crosa JH; Actis LA
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3657-3667. PubMed ID: 15528653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification.
    Seedorf H; Dreisbach A; Hedderich R; Shima S; Thauer RK
    Arch Microbiol; 2004 Oct; 182(2-3):126-37. PubMed ID: 15340796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment.
    Serrano R; Bernal D; Simón E; Ariño J
    J Biol Chem; 2004 May; 279(19):19698-704. PubMed ID: 14993228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.