These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15347955)

  • 1. A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation.
    Gatzka C; Schneider E; Knothe Tate ML; Knothe U; Niederer P; Knothe Tate ML
    J Mater Sci Mater Med; 1999 Dec; 10(12):801-6. PubMed ID: 15347955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ex vivo model to study transport processes and fluid flow in loaded bone.
    Knothe Tate ML; Knothe U
    J Biomech; 2000 Feb; 33(2):247-54. PubMed ID: 10653041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of interstitial fluid flow in the remodeling response to fatigue loading.
    Tami AE; Nasser P; Verborgt O; Schaffler MB; Knothe Tate ML
    J Bone Miner Res; 2002 Nov; 17(11):2030-7. PubMed ID: 12412811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation.
    Knothe Tate ML; Knothe U; Niederer P
    Am J Med Sci; 1998 Sep; 316(3):189-95. PubMed ID: 9749561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal implant debris-induced osteolysis.
    Hallab NJ; Cunningham BW; Jacobs JJ
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S125-38. PubMed ID: 14560184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading.
    Knothe Tate ML; Niederer P; Knothe U
    Bone; 1998 Feb; 22(2):107-17. PubMed ID: 9477233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathology of total joint arthroplasty.II. Mechanisms of implant failure.
    Bauer TW; Schils J
    Skeletal Radiol; 1999 Sep; 28(9):483-97. PubMed ID: 10525792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histologic observations of bone remodeling adjacent to endosteal dental implants.
    Steflik DE; Noel C; McBrayer C; Lake FT; Parr GR; Sisk AL; Hanes PJ
    J Oral Implantol; 1995; 21(2):96-106. PubMed ID: 8699510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
    Steck R; Niederer P; Knothe Tate ML
    J Theor Biol; 2003 Jan; 220(2):249-59. PubMed ID: 12468296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The significance of wear and material fatigue in loosening of hip prostheses].
    Willert HG; Buchhorn GH; Hess T
    Orthopade; 1989 Sep; 18(5):350-69. PubMed ID: 2682455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do capsular pressure and implant motion interact to cause high pressure in the periprosthetic bone in total hip replacement?
    Alidousti H; Taylor M; Bressloff NW
    J Biomech Eng; 2011 Dec; 133(12):121001. PubMed ID: 22206418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periprosthetic wear particle migration and distribution modelling and the implication for osteolysis in cementless total hip replacement.
    Alidousti H; Taylor M; Bressloff NW
    J Mech Behav Biomed Mater; 2014 Apr; 32():225-244. PubMed ID: 24495400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromotion-induced peri-prosthetic fluid flow around a cementless femoral stem.
    Malfroy Camine V; Terrier A; Pioletti DP
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):730-736. PubMed ID: 28271719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear and osteolysis in total joint replacements.
    Kadoya Y; Kobayashi A; Ohashi H
    Acta Orthop Scand Suppl; 1998 Feb; 278():1-16. PubMed ID: 9524528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone remodeling and mechanobiology around implants: Insights from small animal imaging.
    Li Z; Müller R; Ruffoni D
    J Orthop Res; 2018 Feb; 36(2):584-593. PubMed ID: 28975660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short periods of oscillating fluid pressure directed at a titanium-bone interface in rabbits lead to bone lysis.
    van der Vis H; Aspenberg P; de Kleine R; Tigchelaar W; van Noorden CJ
    Acta Orthop Scand; 1998 Feb; 69(1):5-10. PubMed ID: 9524507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supraphysiological loading induces osteocyte-mediated osteoclastogenesis in a novel in vitro model for bone implant loosening.
    Fahlgren A; Bratengeier C; Semeins CM; Klein-Nulend J; Bakker AD
    J Orthop Res; 2018 May; 36(5):1425-1434. PubMed ID: 29068483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.