These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15347970)

  • 81. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion.
    Moon H; Cremmel CV; Kulpa A; Jaeger NA; Kappelhoff R; Overall CM; Waterfield JD; Brunette DM
    J Biomed Mater Res A; 2016 Sep; 104(9):2243-54. PubMed ID: 27102570
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Phenotypic dichotomies in the foreign body reaction.
    Anderson JM; Jones JA
    Biomaterials; 2007 Dec; 28(34):5114-20. PubMed ID: 17706278
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells.
    Miyamoto H; Suzuki T; Miyauchi Y; Iwasaki R; Kobayashi T; Sato Y; Miyamoto K; Hoshi H; Hashimoto K; Yoshida S; Hao W; Mori T; Kanagawa H; Katsuyama E; Fujie A; Morioka H; Matsumoto M; Chiba K; Takeya M; Toyama Y; Miyamoto T
    J Bone Miner Res; 2012 Jun; 27(6):1289-97. PubMed ID: 22337159
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Macrophage phenotype in response to implanted synthetic scaffolds: an immunohistochemical study in the rat.
    Palmer JA; Abberton KM; Mitchell GM; Morrison WA
    Cells Tissues Organs; 2014; 199(2-3):169-83. PubMed ID: 25412799
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression.
    DeFife KM; Jenney CR; McNally AK; Colton E; Anderson JM
    J Immunol; 1997 Apr; 158(7):3385-90. PubMed ID: 9120298
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE).
    Ainslie KM; Bachelder EM; Borkar S; Zahr AS; Sen A; Badding JV; Pishko MV
    Langmuir; 2007 Jan; 23(2):747-54. PubMed ID: 17209629
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Stimulation of monocytes and macrophages: possible influence of surface roughness.
    Fink J; Fuhrmann R; Scharnweber T; Franke RP
    Clin Hemorheol Microcirc; 2008; 39(1-4):205-12. PubMed ID: 18503127
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Foreign body giant cells and osteoclasts are TRAP positive, have podosome-belts and both require OC-STAMP for cell fusion.
    Khan UA; Hashimi SM; Bakr MM; Forwood MR; Morrison NA
    J Cell Biochem; 2013 Aug; 114(8):1772-8. PubMed ID: 23444125
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phospholipase Cγ1 suppresses foreign body giant cell formation by maintaining RUNX1 expression in macrophages.
    Kim YS; Ok CY; Park JS; Lee HY; Bae YS
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1025-1029. PubMed ID: 27913297
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A macrophage/fibroblast co-culture system using a cell migration chamber to study inflammatory effects of biomaterials.
    Zhou G; Loppnow H; Groth T
    Acta Biomater; 2015 Oct; 26():54-63. PubMed ID: 26292266
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Macrophage fusion and multinucleated giant cells of inflammation.
    McNally AK; Anderson JM
    Adv Exp Med Biol; 2011; 713():97-111. PubMed ID: 21432016
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Inhibition of foreign body giant cell formation by 4- hexylresorcinol through suppression of diacylglycerol kinase delta gene expression.
    Kweon H; Kim SG; Choi JY
    Biomaterials; 2014 Oct; 35(30):8576-84. PubMed ID: 25023393
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The foreign body reaction in T-cell-deficient mice.
    Rodriguez A; Macewan SR; Meyerson H; Kirk JT; Anderson JM
    J Biomed Mater Res A; 2009 Jul; 90(1):106-13. PubMed ID: 18491378
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preadsorption of Serum Proteins Regulates Bacterial Infections and Subsequent Macrophage Phagocytosis on Biomaterial Surfaces.
    Hou W; Liu Y; Wu S; Zhang H; Guo B; Zhang B; Qin XJ; Li H
    ACS Appl Bio Mater; 2019 Dec; 2(12):5957-5964. PubMed ID: 35021516
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Inflammatory response to implants.
    Anderson JM
    ASAIO Trans; 1988; 34(2):101-7. PubMed ID: 3285869
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Macrophage Serum-Based Adhesion to Plasma-Processed Surface Chemistry is Distinct from That Exhibited by Fibroblasts.
    Godek ML; Malkov GS; Fisher ER; Grainger DW
    Plasma Process Polym; 2006 Aug; 3(6-7):485-497. PubMed ID: 17417668
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characterization of topographical effects on macrophage behavior in a foreign body response model.
    Chen S; Jones JA; Xu Y; Low HY; Anderson JM; Leong KW
    Biomaterials; 2010 May; 31(13):3479-91. PubMed ID: 20138663
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Design and adsorption of modular engineered proteins to prepare customized, neuron-compatible coatings.
    Straley KS; Heilshorn SC
    Front Neuroeng; 2009; 2():9. PubMed ID: 19562090
    [TBL] [Abstract][Full Text] [Related]  

  • 99. THE ORIGIN AND FATE OF TWO TYPES OF MULTI-NUCLEATED GIANT CELLS IN THE CIRCULATING BLOOD.
    Forkner CE
    J Exp Med; 1930 Jul; 52(2):279-97. PubMed ID: 19869765
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs.
    Parviz M; Gaus K; Gooding JJ
    Chem Sci; 2017 Mar; 8(3):1831-1840. PubMed ID: 28451304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.