These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 15347993)
1. Characterization and histological analyses of a coral-collagen composite used for bone-replacement graft material: a report of clinical cases. Leize EM; Hemmerle J; Voegel JC; Leize M J Mater Sci Mater Med; 1999 Jan; 10(1):47-51. PubMed ID: 15347993 [TBL] [Abstract][Full Text] [Related]
2. In vivo regenerative properties of coralline-derived (biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with Beta-tricalcium phosphate and biphasic calcium phosphate by synchrotron radiation x-ray microtomography. Giuliani A; Manescu A; Larsson E; Tromba G; Luongo G; Piattelli A; Mangano F; Iezzi G; Mangano C Clin Implant Dent Relat Res; 2014 Oct; 16(5):736-50. PubMed ID: 23350548 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Fu K; Xu Q; Czernuszka J; Triffitt JT; Xia Z Biomed Mater; 2013 Dec; 8(6):065007. PubMed ID: 24288015 [TBL] [Abstract][Full Text] [Related]
4. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. Damien E; Revell PA J Appl Biomater Biomech; 2004; 2(2):65-73. PubMed ID: 20803439 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Martinez-Zelaya VR; Zarranz L; Herrera EZ; Alves AT; Uzeda MJ; Mavropoulos E; Rossi AL; Mello A; Granjeiro JM; Calasans-Maia MD; Rossi AM Int J Nanomedicine; 2019; 14():3471-3490. PubMed ID: 31190805 [No Abstract] [Full Text] [Related]
6. A composite graft material containing bone particles and collagen in osteoinduction in mouse. Tsai CH; Chou MY; Jonas M; Tien YT; Chi EY J Biomed Mater Res; 2002; 63(1):65-70. PubMed ID: 11787031 [TBL] [Abstract][Full Text] [Related]
7. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions--a preliminary study. Kujala S; Raatikainen T; Ryhänen J; Kaarela O; Jalovaara P Scand J Surg; 2002; 91(2):186-90. PubMed ID: 12164521 [TBL] [Abstract][Full Text] [Related]
8. Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Piattelli A; Podda G; Scarano A Biomaterials; 1997 Apr; 18(8):623-7. PubMed ID: 9134162 [TBL] [Abstract][Full Text] [Related]
9. Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects. Suzawa Y; Funaki T; Watanabe J; Iwai S; Yura Y; Nakano T; Umakoshi Y; Akashi M J Biomed Mater Res A; 2010 Jun; 93(3):965-75. PubMed ID: 19722281 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model. Sciadini MF; Dawson JM; Johnson KD J Orthop Res; 1997 Nov; 15(6):844-57. PubMed ID: 9497809 [TBL] [Abstract][Full Text] [Related]
11. Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial. Kim CS; Choi SH; Cho KS; Chai JK; Wikesjö UM; Kim CK J Clin Periodontol; 2005 Jun; 32(6):583-9. PubMed ID: 15882215 [TBL] [Abstract][Full Text] [Related]
12. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes. Damien CJ; Ricci JL; Christel P; Alexander H; Patat JL Calcif Tissue Int; 1994 Aug; 55(2):151-8. PubMed ID: 7953981 [TBL] [Abstract][Full Text] [Related]
13. Vitalized guided bone regeneration membrane from marrow stromal cells. Feng X; Gao Z; Mao T; Chen F Int J Oral Maxillofac Implants; 2009; 24(4):672-8. PubMed ID: 19885407 [TBL] [Abstract][Full Text] [Related]
14. Biphasic alloplastic graft used to preserve the dimension of the edentulous ridge: an experimental study in the dog. Lindhe J; Araújo MG; Bufler M; Liljenberg B Clin Oral Implants Res; 2013 Oct; 24(10):1158-63. PubMed ID: 22804845 [TBL] [Abstract][Full Text] [Related]
15. Hydroxyapatite biomaterial implanted in human periodontal defects: an histological and ultrastructural study. Orly I; Kerebel B; Abjean J; Heughebaert M; Barbieux I Bull Group Int Rech Sci Stomatol Odontol; 1989 Jun; 32(2):79-86. PubMed ID: 2765689 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the osteoconductive properties of three particulate bone fillers in a rabbit model: allograft, calcium carbonate (Biocoral®) and S53P4 bioactive glass. Gunn JM; Rekola J; Hirvonen J; Aho AJ Acta Odontol Scand; 2013 Sep; 71(5):1238-42. PubMed ID: 23294163 [TBL] [Abstract][Full Text] [Related]
17. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials. Alonso-Sierra S; Velázquez-Castillo R; Millán-Malo B; Nava R; Bucio L; Manzano-Ramírez A; Cid-Luna H; Rivera-Muñoz EM Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():45-53. PubMed ID: 28866187 [TBL] [Abstract][Full Text] [Related]
18. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft. He F; Zhang J; Tian X; Wu S; Chen X Colloids Surf B Biointerfaces; 2015 Dec; 136():845-52. PubMed ID: 26539810 [TBL] [Abstract][Full Text] [Related]
19. Maxillary sinus augmentation using an engineered porous hydroxyapatite: a clinical, histological, and transmission electron microscopy study in man. Mangano C; Scarano A; Iezzi G; Orsini G; Perrotti V; Mangano F; Montini S; Piccirilli M; Piattelli A J Oral Implantol; 2006; 32(3):122-31. PubMed ID: 16836176 [TBL] [Abstract][Full Text] [Related]
20. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. Wei Q; Lu J; Wang Q; Fan H; Zhang X Nanotechnology; 2015 Mar; 26(11):115605. PubMed ID: 25719911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]