These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15348015)

  • 1. Processing and properties of two different poly (ortho esters).
    Kellomäki M; Heller J; Törmälä P
    J Mater Sci Mater Med; 2000 Jun; 11(6):345-55. PubMed ID: 15348015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro drug release from self-catalyzed poly(ortho ester): case study of 5-fluorouracil.
    Sintzel MB; Heller J; Ng SY; Tabatabay C; Schwach-Abdellaoui K; Gurny R
    J Control Release; 1998 Nov; 55(2-3):213-8. PubMed ID: 9795063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microencapsulation of dehydroepiandrosterone (DHEA) with poly(ortho ester) polymers by interfacial polycondensation.
    Bouchemal K; Briançon S; Chaumont P; Fessi H; Zydowicz N
    J Microencapsul; 2003; 20(5):637-51. PubMed ID: 12909547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation.
    Vainionpää S; Kilpikari J; Laiho J; Helevirta P; Rokkanen P; Törmälä P
    Biomaterials; 1987 Jan; 8(1):46-8. PubMed ID: 3828445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying.
    Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J
    Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of contraceptive steroids from biodegradable poly (ortho esters).
    Heller J; Penhale DW; Fritzinger BK; Rose JE; Helwing RF
    Contracept Deliv Syst; 1983 Jan; 4(1):43-53. PubMed ID: 12264716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro.
    Välimaa T; Laaksovirta S
    Biomaterials; 2004; 25(7-8):1225-32. PubMed ID: 14643596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of poly(ortho esters): a historical overview.
    Heller J
    Biomaterials; 1990 Nov; 11(9):659-65. PubMed ID: 2090300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purity and stability assessment of a semi-solid poly(ortho ester) used in drug delivery systems.
    Merkli A; Heller J; Tabatabay C; Gurny R
    Biomaterials; 1996 May; 17(9):897-902. PubMed ID: 8718935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of self-catalyzed poly(ortho ester).
    Sintzel MB; Heller J; Ng SY; Taylor MS; Tabatabay C; Gurny R
    Biomaterials; 1998; 19(7-9):791-800. PubMed ID: 9663755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment.
    Helle J; Barr J; Ng SY; Shen HR; Schwach-Abdellaoui K; Gurny R; Vivien-Castioni N; Loup PJ; Baehni P; Mombelli A
    Biomaterials; 2002 Nov; 23(22):4397-404. PubMed ID: 12219830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-reinforcement and hydrolytic degradation of amorphous lactic acid based poly(ester-amide), and of its composite with sol-gel derived fibers.
    Haltia AM; Lähteenkorva K; Törmälä P; Helminen A; Tuominen J; Seppälä J; Veittola S; Ahvenlammi J
    J Mater Sci Mater Med; 2002 Oct; 13(10):903-9. PubMed ID: 15348182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of oligomer-modified acrylic bone cement.
    Puska MA; Kokkari AK; Närhi TO; Vallittu PK
    Biomaterials; 2003 Feb; 24(3):417-25. PubMed ID: 12423596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods.
    Matsusue Y; Yamamuro T; Oka M; Shikinami Y; Hyon SH; Ikada Y
    J Biomed Mater Res; 1992 Dec; 26(12):1553-67. PubMed ID: 1484062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: an experimental study on rabbits.
    Kettunen J; Mäkelä EA; Miettinen H; Nevalainen T; Heikkilä M; Pohjonen T; Törmälä P; Rokkanen P
    Biomaterials; 1998 Jul; 19(14):1219-28. PubMed ID: 9720885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ortho esters): synthesis, characterization, properties and uses.
    Heller J; Barr J; Ng SY; Abdellauoi KS; Gurny R
    Adv Drug Deliv Rev; 2002 Oct; 54(7):1015-39. PubMed ID: 12384319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.
    Slivka MA; Chu CC; Adisaputro IA
    J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide.
    Ferguson S; Wahl D; Gogolewski S
    J Biomed Mater Res; 1996 Apr; 30(4):543-51. PubMed ID: 8847363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.