These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15348099)

  • 1. Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia.
    Liu D; Wagner HD; Weiner S
    J Mater Sci Mater Med; 2000 Jan; 11(1):49-60. PubMed ID: 15348099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens.
    Liu D; Weiner S; Wagner HD
    J Biomech; 1999 Jul; 32(7):647-54. PubMed ID: 10400351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamellar bone: structure-function relations.
    Weiner S; Traub W; Wagner HD
    J Struct Biol; 1999 Jun; 126(3):241-55. PubMed ID: 10475685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material properties of interstitial lamellae reflect local strain environments.
    Goodwin KJ; Sharkey NA
    J Orthop Res; 2002 May; 20(3):600-6. PubMed ID: 12038637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of collagen cross-links and osteon collagen/lamellar morphotypes in equine third metacarpals in tension and compression tests.
    Skedros JG; Dayton MR; Cronin JT; Mears CS; Bloebaum RD; Wang X; Bachus KN
    J Exp Biol; 2024 Jul; 227(14):. PubMed ID: 39045755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in the individual thick lamellar properties within osteons by nanoindentation.
    Rho JY; Zioupos P; Currey JD; Pharr GM
    Bone; 1999 Sep; 25(3):295-300. PubMed ID: 10495133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear deformation and fracture of human cortical bone.
    Tang T; Ebacher V; Cripton P; Guy P; McKay H; Wang R
    Bone; 2015 Feb; 71():25-35. PubMed ID: 25305520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional distinctions in cortical bone mineral density measured by pQCT can predict alterations in material property at the tibial diaphysis of the Cynomolgus monkey.
    Nonaka K; Fukuda S; Aoki K; Yoshida T; Ohya K
    Bone; 2006 Feb; 38(2):265-72. PubMed ID: 16213204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties.
    Faingold A; Cohen SR; Reznikov N; Wagner HD
    Acta Biomater; 2013 Apr; 9(4):5956-62. PubMed ID: 23220032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain redistribution and cracking behavior of human bone during bending.
    Ebacher V; Tang C; McKay H; Oxland TR; Guy P; Wang R
    Bone; 2007 May; 40(5):1265-75. PubMed ID: 17317352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of inner mechanism of anisotropic mechanical property of antler bone.
    Fang Z; Chen B; Lin S; Ye W; Xiao H; Chen X
    J Mech Behav Biomed Mater; 2018 Dec; 88():1-10. PubMed ID: 30114597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of bone lamellar-level elastic moduli.
    Hoffler CE; Moore KE; Kozloff K; Zysset PK; Brown MB; Goldstein SA
    Bone; 2000 Jun; 26(6):603-9. PubMed ID: 10831932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anisotropy of osteonal bone and its ultrastructural implications.
    Turner CH; Chandran A; Pidaparti RM
    Bone; 1995 Jul; 17(1):85-9. PubMed ID: 7577163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of contemporary composite resins and their interrelations.
    Thomaidis S; Kakaboura A; Mueller WD; Zinelis S
    Dent Mater; 2013 Aug; 29(8):e132-41. PubMed ID: 23790281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis).
    Chen PY; Stokes AG; McKittrick J
    Acta Biomater; 2009 Feb; 5(2):693-706. PubMed ID: 18951859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.