These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15348117)

  • 21. Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation.
    Kim DG; Huja SS; Lee HR; Tee BC; Hueni S
    J Biomech Eng; 2010 Feb; 132(2):024502. PubMed ID: 20370248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoindentation of osteonal bone lamellae.
    Faingold A; Cohen SR; Wagner HD
    J Mech Behav Biomed Mater; 2012 May; 9():198-206. PubMed ID: 22498296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone.
    Isaksson H; Nagao S; Małkiewicz M; Julkunen P; Nowak R; Jurvelin JS
    J Biomech; 2010 Aug; 43(12):2410-7. PubMed ID: 20478559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical properties of OI type III bone tissue measured by nanoindentation.
    Fan Z; Smith PA; Eckstein EC; Harris GF
    J Biomed Mater Res A; 2006 Oct; 79(1):71-7. PubMed ID: 16758461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of mineral dissolution from bone specimens on the viscoelastic properties of cortical bone.
    Sasaki N; Nozoe T; Nishihara R; Fukui A
    J Biomech; 2008 Dec; 41(16):3511-4. PubMed ID: 18996531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indentation properties of young and old osteons.
    Huja SS; Beck FM; Thurman DT
    Calcif Tissue Int; 2006 Jun; 78(6):392-7. PubMed ID: 16830198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age, gender, and bone lamellae elastic moduli.
    Hoffler CE; Moore KE; Kozloff K; Zysset PK; Goldstein SA
    J Orthop Res; 2000 May; 18(3):432-7. PubMed ID: 10937630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromechanical properties of epiphyseal trabecular bone and primary spongiosa around the physis: an in situ nanoindentation study.
    Lee FY; Rho JY; Harten R; Parsons JR; Behrens FF
    J Pediatr Orthop; 1998; 18(5):582-5. PubMed ID: 9746404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endodontic instruments after torsional failure: nanoindentation test.
    Jamleh A; Sadr A; Nomura N; Ebihara A; Yahata Y; Hanawa T; Tagami J; Suda H
    Scanning; 2014; 36(4):437-43. PubMed ID: 24610598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface characterization of the raw and cooked bovine cortical metatarsal bone.
    Petrovic BB; Kojić S; Perić TO; Šipovac M; Lazarević J; Stefanović S; Stojanović G
    Acta Bioeng Biomech; 2019; 21(1):13-21. PubMed ID: 31197288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of New Bone Formation and Osseointegration Around Subperiosteal Titanium Implants with Histometry and Nanoindentation.
    Claffey N; Bashara H; O'Reilly P; Polyzois I
    Int J Oral Maxillofac Implants; 2015; 30(5):1004-10. PubMed ID: 26394334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique.
    Xu J; Rho JY; Mishra SR; Fan Z
    J Biomed Mater Res A; 2003 Dec; 67(3):719-26. PubMed ID: 14613218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6.
    Silva MJ; Brodt MD; Fan Z; Rho JY
    J Biomech; 2004 Nov; 37(11):1639-46. PubMed ID: 15388305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of nanoindentation measurements between osteogenesis imperfecta Type III and Type IV and between different anatomic locations (femur/tibia versus iliac crest).
    Fan Z; Smith PA; Harris GF; Rauch F; Bajorunaite R
    Connect Tissue Res; 2007; 48(2):70-5. PubMed ID: 17453908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the mechanical properties of rat bone under simulated microgravity using nanoindentation.
    Sun LW; Fan YB; Li DY; Zhao F; Xie T; Yang X; Gu ZT
    Acta Biomater; 2009 Nov; 5(9):3506-11. PubMed ID: 19450712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Material properties of interstitial lamellae reflect local strain environments.
    Goodwin KJ; Sharkey NA
    J Orthop Res; 2002 May; 20(3):600-6. PubMed ID: 12038637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites.
    Naoum S; Ellakwa A; Martin F; Swain M
    Oper Dent; 2011; 36(4):422-32. PubMed ID: 21819201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-scale characterization of swine femoral cortical bone.
    Feng L; Jasiuk I
    J Biomech; 2011 Jan; 44(2):313-20. PubMed ID: 21040922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.