These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15348243)

  • 1. Effects of environment on the creep properties of a poly(ethylmethacrylate) based bone cement.
    Arnold JC; Venditti NP
    J Mater Sci Mater Med; 2001 Aug; 12(8):707-17. PubMed ID: 15348243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylic bone cements: influence of time and environment on physical properties.
    Nottrott M
    Acta Orthop Suppl; 2010 Jun; 81(341):1-27. PubMed ID: 20486859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the long-term creep behaviour of hydroxyapatite-filled polyethylmethacrylate bone cements.
    Arnold JC; Venditti NP
    J Mater Sci Mater Med; 2007 Sep; 18(9):1849-58. PubMed ID: 17492254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.
    Morgan RL; Farrar DF; Rose J; Forster H; Morgan I
    J Mater Sci Mater Med; 2003 Apr; 14(4):321-5. PubMed ID: 15348456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Temperature-Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy.
    Krauklis AE; Akulichev AG; Gagani AI; Echtermeyer AT
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Ringer's solution on creep resistance of hydroxyapatite reinforced polyethylene composites.
    Suwanprateeb J; Tanner KE; Turner S; Bonfield W
    J Mater Sci Mater Med; 1997 Aug; 8(8):469-72. PubMed ID: 15348712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic creep and mechanical characteristics of SmartSet GHV bone cement.
    Liu CZ; Green SM; Watkins ND; Baker D; McCaskie AW
    J Mater Sci Mater Med; 2005 Feb; 16(2):153-60. PubMed ID: 15744604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent.
    Harper EJ; Braden M; Bonfield W
    J Mater Sci Mater Med; 2000 Aug; 11(8):491-7. PubMed ID: 15347999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone.
    Bowman SM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1999 Apr; 121(2):253-8. PubMed ID: 10211462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creep of a poly(etherurethane urea) in an oxidative environment.
    Wu YK; Lodoen GA; Anderson JM; Baer E; Hiltner A
    J Biomed Mater Res; 1994 Apr; 28(4):515-22. PubMed ID: 8006055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the creep behavior of poly(methyl methacrylate) cements.
    Treharne RW; Brown N
    J Biomed Mater Res; 1975 Jul; 9(4):81-88. PubMed ID: 1176512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of immediate and delayed light-curing on nano-indentation creep and contraction stress of dual-cured resin cements.
    Khoroushi M; Ghasemi M; Abedinzadeh R; Samimi P
    J Mech Behav Biomed Mater; 2016 Dec; 64():272-80. PubMed ID: 27544311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal Mechano-Sorptive Creep Behavior of Chinese Fir in Tension during Moisture Adsorption Processes.
    Peng H; Lu J; Jiang J; Cao J
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28796174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature, stress and microstructure on the creep of compact bovine bone.
    Rimnac CM; Petko AA; Santner TJ; Wright TM
    J Biomech; 1993 Mar; 26(3):219-28. PubMed ID: 8468335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep behavior comparison of CMW1 and palacos R-40 clinical bone cements.
    Liu C; Green SM; Watkins ND; Gregg PJ; McCaskie AW
    J Mater Sci Mater Med; 2002 Nov; 13(11):1021-8. PubMed ID: 15348171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep studies of multiphase acrylic systems.
    Oysaed H; Ruyter IE
    J Biomed Mater Res; 1989 Jul; 23(7):719-33. PubMed ID: 2738084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic stability of resin-composites aged in food-simulating solvents.
    Marghalani HY; Watts DC
    Dent Mater; 2013 Sep; 29(9):963-70. PubMed ID: 23910977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of delayed injection time on the creep behavior of acrylic bone cement.
    Norman TL; Williams M; Gruen TA; Blaha JD
    J Biomed Mater Res; 1997 Nov; 37(2):151-4. PubMed ID: 9358305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep behavior of glass-ionomer restorative materials.
    Papadogiannis Y; Helvatjoglou-Antoniadi M; Lakes RC; Sapountjis M
    Dent Mater; 1991 Jan; 7(1):40-3. PubMed ID: 1901812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.