These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 15348340)
1. Bioactive response of Ag-doped tape cast Bioglass 45S5 following heat treatment. Clupper DC; Hench LL J Mater Sci Mater Med; 2001; 12(10-12):917-21. PubMed ID: 15348340 [TBL] [Abstract][Full Text] [Related]
2. Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Clupper DC; Mecholsky JJ; LaTorre GP; Greenspan DC Biomaterials; 2002 Jun; 23(12):2599-606. PubMed ID: 12033609 [TBL] [Abstract][Full Text] [Related]
3. Sintering temperature effects on the in vitro bioactive response of tape cast and sintered bioactive glass-ceramic in Tris buffer. Clupper DC; Mecholsky JJ; LaTorre GP; Greenspan DC J Biomed Mater Res; 2001 Dec; 57(4):532-40. PubMed ID: 11553883 [TBL] [Abstract][Full Text] [Related]
4. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass particles for tissue engineering applications. Boccaccini AR; Notingher I; Maquet V; Jérôme R J Mater Sci Mater Med; 2003 May; 14(5):443-50. PubMed ID: 15348448 [TBL] [Abstract][Full Text] [Related]
5. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Faure J; Drevet R; Lemelle A; Ben Jaber N; Tara A; El Btaouri H; Benhayoune H Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():407-12. PubMed ID: 25492213 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition. Motealleh A; Eqtesadi S; Pajares A; Miranda P J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579 [TBL] [Abstract][Full Text] [Related]
7. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity. Franchini M; Lusvardi G; Malavasi G; Menabue L Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1401-6. PubMed ID: 24364938 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair. Shuai C; Zhou J; Wu P; Gao C; Feng P; Xiao T; Deng Y; Peng S Materials (Basel); 2015 Nov; 8(11):7498-7510. PubMed ID: 28793652 [TBL] [Abstract][Full Text] [Related]
9. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174 [TBL] [Abstract][Full Text] [Related]
10. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Pishbin F; Mouriño V; Gilchrist JB; McComb DW; Kreppel S; Salih V; Ryan MP; Boccaccini AR Acta Biomater; 2013 Jul; 9(7):7469-79. PubMed ID: 23511807 [TBL] [Abstract][Full Text] [Related]
11. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. Hoppe A; Meszaros R; Stähli C; Romeis S; Schmidt J; Peukert W; Marelli B; Nazhat SN; Wondraczek L; Lao J; Jallot E; Boccaccini AR J Mater Chem B; 2013 Nov; 1(41):5659-5674. PubMed ID: 32261190 [TBL] [Abstract][Full Text] [Related]
12. Novel starch thermoplastic/Bioglass composites: mechanical properties, degradation behavior and in-vitro bioactivity. Leonor IB; Sousa RA; Cunha AM; Reis RL; Zhong ZP; Greenspan D J Mater Sci Mater Med; 2002 Oct; 13(10):939-45. PubMed ID: 15348187 [TBL] [Abstract][Full Text] [Related]
13. Bioactivity characterization of 45S5 bioglass using TL, OSL and EPR: Comparison with the case of 58S sol-gel bioactive glass. Polymeris GS; Giannoulatou V; Kyriakidou A; Sfampa IK; Theodorou GS; Şahiner E; Meriç N; Kitis G; Paraskevopoulos KM Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):673-680. PubMed ID: 27770941 [TBL] [Abstract][Full Text] [Related]
14. The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation. Plewinski M; Schickle K; Lindner M; Kirsten A; Weber M; Fischer H Dent Mater; 2013 Dec; 29(12):1256-64. PubMed ID: 24157243 [TBL] [Abstract][Full Text] [Related]
15. Role of phase separation on the biological performance of 45S5 Bioglass Kowal TJ; Golovchak R; Chokshi T; Harms J; Thamma U; Jain H; Falk MM J Mater Sci Mater Med; 2017 Sep; 28(10):161. PubMed ID: 28905286 [TBL] [Abstract][Full Text] [Related]
16. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581 [TBL] [Abstract][Full Text] [Related]
17. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
18. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. Roether JA; Gough JE; Boccaccini AR; Hench LL; Maquet V; Jérôme R J Mater Sci Mater Med; 2002 Dec; 13(12):1207-14. PubMed ID: 15348667 [TBL] [Abstract][Full Text] [Related]
19. Gel-derived bioglass as a compound of hydroxyapatite composites. Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249 [TBL] [Abstract][Full Text] [Related]