These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 15348381)
21. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. Sprio S; Tampieri A; Celotti G; Landi E J Mech Behav Biomed Mater; 2009 Apr; 2(2):147-55. PubMed ID: 19627818 [TBL] [Abstract][Full Text] [Related]
22. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
23. Hydroxyapatite ceramics with selected sintering additives. Suchanek W; Yashima M; Kakihana M; Yoshimura M Biomaterials; 1997 Jul; 18(13):923-33. PubMed ID: 9199762 [TBL] [Abstract][Full Text] [Related]
24. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Bellucci D; Sola A; Anesi A; Salvatori R; Chiarini L; Cannillo V Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():196-205. PubMed ID: 25842126 [TBL] [Abstract][Full Text] [Related]
25. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581 [TBL] [Abstract][Full Text] [Related]
26. Effect of glass phase on the dissolution of hydroxyapatite. Youn SH; Yang ZX; Hwang KH; Seo DS; Lee JK; Jun BS; Kim H J Nanosci Nanotechnol; 2008 Feb; 8(2):679-84. PubMed ID: 18464391 [TBL] [Abstract][Full Text] [Related]
27. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Nilen RW; Richter PW J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322 [TBL] [Abstract][Full Text] [Related]
28. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. Ataollahi Oshkour A; Pramanik S; Mehrali M; Yau YH; Tarlochan F; Abu Osman NA J Mech Behav Biomed Mater; 2015 Sep; 49():321-31. PubMed ID: 26072197 [TBL] [Abstract][Full Text] [Related]
29. Phase Transformation and Mechanical Optimization of Eggshell-Derived Hydroxyapatite across a Wide Sintering Temperature Range. Wu SC; Hsu HC; Liu MY; Ho WF Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203240 [TBL] [Abstract][Full Text] [Related]
30. Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatites with different Ca/P ratios. Fanovich MA; Porto Lopez JM J Mater Sci Mater Med; 1998 Jan; 9(1):53-60. PubMed ID: 15348702 [TBL] [Abstract][Full Text] [Related]
31. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement. Ha NR; Yang ZX; Hwang KH; Kim TS; Lee JK J Nanosci Nanotechnol; 2010 May; 10(5):3459-62. PubMed ID: 20358978 [TBL] [Abstract][Full Text] [Related]
32. A New Highly Bioactive Composite for Scaffold Applications: A Feasibility Study. Bellucci D; Cannillo V; Sola A Materials (Basel); 2011 Jan; 4(2):339-354. PubMed ID: 28879993 [TBL] [Abstract][Full Text] [Related]
33. Integrated 3D Information for Custom-Made Bone Grafts: Focus on Biphasic Calcium Phosphate Bone Substitute Biomaterials. Giuliani A; Gatto ML; Gobbi L; Mangano FG; Mangano C Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650587 [TBL] [Abstract][Full Text] [Related]
34. Glass-reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite. Lopes MA; Santos JD; Monteiro FJ; Knowles JC J Biomed Mater Res; 1998 Feb; 39(2):244-51. PubMed ID: 9457554 [TBL] [Abstract][Full Text] [Related]
35. Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. Evis Z; Sato M; Webster TJ J Biomed Mater Res A; 2006 Sep; 78(3):500-7. PubMed ID: 16736481 [TBL] [Abstract][Full Text] [Related]
36. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties. Harabi A; Guerfa F; Harabi E; Benhassine MT; Foughali L; Zaiou S Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():33-42. PubMed ID: 27157725 [TBL] [Abstract][Full Text] [Related]
38. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics. Li HC; Wang DG; Meng XG; Chen CZ Colloids Surf B Biointerfaces; 2014 Jun; 118():226-33. PubMed ID: 24780435 [TBL] [Abstract][Full Text] [Related]
39. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. Curran DJ; Fleming TJ; Towler MR; Hampshire S J Mech Behav Biomed Mater; 2011 Nov; 4(8):2063-73. PubMed ID: 22098906 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of Hydroxyapatite/Tantalum Composites by Pressureless Sintering in Different Atmosphere. Cai C; Wang X; Li B; Dong K; Shen Y; Li Z; Shen L ACS Omega; 2021 May; 6(19):12831-12840. PubMed ID: 34056434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]