BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15348447)

  • 1. An innovative auto-catalytic deposition route to produce calcium-phosphate coatings on polymeric biomaterials.
    Leonor IB; Reis RL
    J Mater Sci Mater Med; 2003 May; 14(5):435-41. PubMed ID: 15348447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams.
    Reis RL; Cunha AM; Fernandes MH; Correia RN
    J Mater Sci Mater Med; 1997 Dec; 8(12):897-905. PubMed ID: 15348812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification tailors the characteristics of biomimetic coatings nucleated on starch-based polymers.
    Oliveira AL; Elvira C; Reis RL; Vázquez B; San Román J
    J Mater Sci Mater Med; 1999 Dec; 10(12):827-35. PubMed ID: 15347960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel starch thermoplastic/Bioglass composites: mechanical properties, degradation behavior and in-vitro bioactivity.
    Leonor IB; Sousa RA; Cunha AM; Reis RL; Zhong ZP; Greenspan D
    J Mater Sci Mater Med; 2002 Oct; 13(10):939-45. PubMed ID: 15348187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell adhesion and proliferation on biomimetic calcium-phosphate coatings produced by a sodium silicate gel methodology.
    Oliveira AL; Alves CM; Reis RL
    J Mater Sci Mater Med; 2002 Dec; 13(12):1181-8. PubMed ID: 15348663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based process.
    Oliveira AL; Reis RL
    J Mater Sci Mater Med; 2004 Apr; 15(4):533-40. PubMed ID: 15332631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline treatments to render starch-based biodegradable polymers self-mineralizable.
    Leonor IB; Kim HM; Balas F; Kawashita M; Reis RL; Kokubo T; Nakamura T
    J Tissue Eng Regen Med; 2007; 1(6):425-35. PubMed ID: 18181243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures.
    Oliveira AL; Malafaya PB; Reis RL
    Biomaterials; 2003 Jul; 24(15):2575-84. PubMed ID: 12726711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic calcium phosphate coatings on Ti6AI4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3-.
    Barrére F; Layrolle P; van Blitterswijk CA; de Groot K
    Bone; 1999 Aug; 25(2 Suppl):107S-111S. PubMed ID: 10458288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings.
    Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA
    J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-composite sandwich moldings: processing, mechanical performance and bioactive behavior.
    Sousa RA; Oliveira AL; Reis RL; Cunha AM; Bevis MJ
    J Mater Sci Mater Med; 2003 May; 14(5):385-97. PubMed ID: 15348441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions.
    Oliveira AL; Costa SA; Sousa RA; Reis RL
    Acta Biomater; 2009 Jun; 5(5):1626-38. PubMed ID: 19188103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of surface topography in biomimetic calcium phosphate coatings.
    Costa DO; Allo BA; Klassen R; Hutter JL; Dixon SJ; Rizkalla AS
    Langmuir; 2012 Feb; 28(8):3871-80. PubMed ID: 22242934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings.
    Leeuwenburgh SC; Wolke JG; Siebers MC; Schoonman J; Jansen JA
    Biomaterials; 2006 Jun; 27(18):3368-78. PubMed ID: 16500702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid.
    Liu X; Ding C; Wang Z
    Biomaterials; 2001 Jul; 22(14):2007-12. PubMed ID: 11426878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of different heat-treated radio frequency magnetron sputtered calcium phosphate coatings.
    Yonggang Y; Wolke JG; Yubao L; Jansen JA
    Clin Oral Implants Res; 2007 Jun; 18(3):345-53. PubMed ID: 17298487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance.
    Urquia Edreira ER; Wolke JG; Aldosari AA; Al-Johany SS; Anil S; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2015 Jan; 103(1):300-10. PubMed ID: 24659523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of calcium phosphates on titanium implants with four different bioactive surface preparations. An in vitro study.
    Arvidsson A; Franke-Stenport V; Andersson M; Kjellin P; Sul YT; Wennerberg A
    J Mater Sci Mater Med; 2007 Oct; 18(10):1945-54. PubMed ID: 17554602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biocompatibility of novel starch-based polymers and composites: in vitro studies.
    Marques AP; Reis RL; Hunt JA
    Biomaterials; 2002 Mar; 23(6):1471-8. PubMed ID: 11829443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.