These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15348530)

  • 1. Tissue reactions of subcutaneously implanted mixture of epsilon-caprolactone-lactide copolymer and tricalcium phosphate. An electron microscopic evaluation in sheep.
    Ekholm M; Hietanen J; Tulamo RM; Muhonen J; Lindqvist C; Kellomäki M; Suuronen R
    J Mater Sci Mater Med; 2003 Oct; 14(10):913-8. PubMed ID: 15348530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixture of epsilon-caprolactone-lactide copolymer and tricalcium phosphate: a histological and immunohistochemical study of tissue reactions.
    Ekholm M; Hietanen J; Lindqvist C; Rautavuori J; Santavirta S; Salo A; Seppälä J; Suuronen R
    J Mater Sci Mater Med; 1999 Feb; 10(2):69-74. PubMed ID: 15347927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The copolymer of epsilon-caprolactone-lactide and tricalcium phosphate does not enhance bone growth in mandibular defect of sheep.
    Ekholm M; Hietanen J; Tulamo RM; Muhonen J; Lindqvist C; Kellomäki M; Suuronen R
    J Mater Sci Mater Med; 2006 Feb; 17(2):139-45. PubMed ID: 16502246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological study of tissue reactions to epsilon-caprolactone-lactide copolymer in paste form.
    Ekholm M; Hietanen J; Lindqvist C; Rautavuori J; Santavirta S; Suuronen R
    Biomaterials; 1999 Jul; 20(14):1257-62. PubMed ID: 10403042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A histological and immunohistochemical study of tissue reactions to solid poly(ortho ester) in rabbits.
    Ekholm M; Helander P; Hietanen J; Lindqvist C; Salo A; Kellomäki M; Suuronen R
    Int J Oral Maxillofac Surg; 2006 Jul; 35(7):631-5. PubMed ID: 16540288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone).
    den Dunnen WF; Robinson PH; van Wessel R; Pennings AJ; van Leeuwen MB; Schakenraad JM
    J Biomed Mater Res; 1997 Sep; 36(3):337-46. PubMed ID: 9260105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable osteosynthesis material for stabilization of midface fractures: experimental investigation in sheep.
    Bähr W; Stricker A; Gutwald R; Wellens E
    J Craniomaxillofac Surg; 1999 Feb; 27(1):51-7. PubMed ID: 10188128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation.
    Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of bone healing in defects grafted with a copolymer of polylactic/polyglycolic acids.
    Imbronito AV; Scarano A; Orsini G; Piattelli A; Arana-Chavez VE
    J Biomed Mater Res A; 2005 Aug; 74(2):215-21. PubMed ID: 15948203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable polymer (D,L-lactide-epsilon-caprolactone) in aortic vascular prosthesis: morphological evaluation in an animal model.
    Valente M; Pettenazzo E; Di Filippo L; Laborde F; Rinaldi S; Thiene G
    Int J Artif Organs; 2002 Aug; 25(8):777-82. PubMed ID: 12296462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers.
    Li S; Liu L; Garreau H; Vert M
    Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a (trimethylenecarbonate-co-epsilon-caprolactone) polymer--part 2: in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide.
    Fabre T; Schappacher M; Bareille R; Dupuy B; Soum A; Bertrand-Barat J; Baquey C
    Biomaterials; 2001 Nov; 22(22):2951-8. PubMed ID: 11575469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo.
    Boyan BD; Lohmann CH; Somers A; Niederauer GG; Wozney JM; Dean DD; Carnes DL; Schwartz Z
    J Biomed Mater Res; 1999 Jul; 46(1):51-9. PubMed ID: 10357135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide).
    Lemoine D; Francois C; Kedzierewicz F; Preat V; Hoffman M; Maincent P
    Biomaterials; 1996 Nov; 17(22):2191-7. PubMed ID: 8922605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.