These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15348665)

  • 1. Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods.
    Padilla S; Román J; Vallet-Regí M
    J Mater Sci Mater Med; 2002 Dec; 13(12):1193-7. PubMed ID: 15348665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluation of hydroxyapatite foams.
    Sepulveda P; Bressiani AH; Bressiani JC; Meseguer L; König B
    J Biomed Mater Res; 2002 Dec; 62(4):587-92. PubMed ID: 12221707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation.
    Rodríguez-Lorenzo LM; Vallet-Regí M; Ferreira JM
    J Biomed Mater Res; 2002 May; 60(2):232-40. PubMed ID: 11857429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods.
    González Ocampo JI; Escobar Sierra DM; Ossa Orozco CP
    J Adv Res; 2016 Mar; 7(2):297-304. PubMed ID: 26966570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system.
    Netz DJ; Sepulveda P; Pandolfelli VC; Spadaro AC; Alencastre JB; Bentley MV; Marchetti JM
    Int J Pharm; 2001 Feb; 213(1-2):117-25. PubMed ID: 11165099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure.
    Li B; Chen X; Guo B; Wang X; Fan H; Zhang X
    Acta Biomater; 2009 Jan; 5(1):134-43. PubMed ID: 18799376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation.
    Sepulveda P; Binner JG; Rogero SO; Higa OZ; Bressiani JC
    J Biomed Mater Res; 2000 Apr; 50(1):27-34. PubMed ID: 10644960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Porous Al₂O₃ Ceramics with Submicron-Sized Pores Using a Water-Based Gelcasting Method.
    Yang Z; Chen N; Qin X
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering.
    Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN
    Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2251-6. PubMed ID: 17562138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo.
    Tamai N; Myoui A; Tomita T; Nakase T; Tanaka J; Ochi T; Yoshikawa H
    J Biomed Mater Res; 2002 Jan; 59(1):110-7. PubMed ID: 11745543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo.
    Lu JX; Flautre B; Anselme K; Hardouin P; Gallur A; Descamps M; Thierry B
    J Mater Sci Mater Med; 1999 Feb; 10(2):111-20. PubMed ID: 15347932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.
    Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG
    Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous hydroxyapatite ceramics of bi-modal pore size distribution.
    Komlev VS; Barinov SM
    J Mater Sci Mater Med; 2002 Mar; 13(3):295-9. PubMed ID: 15348627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue engineering with porous hydroxyapatite ceramics.
    Yoshikawa H; Myoui A
    J Artif Organs; 2005; 8(3):131-6. PubMed ID: 16235028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.