These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15348692)

  • 1. Interdiffusion in short-fibre reinforced hydroxyapatite ceramics.
    Knepper M; Milthorpe BK; Moricca S
    J Mater Sci Mater Med; 1998 Oct; 9(10):589-96. PubMed ID: 15348692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.
    Knepper M; Moricca S; Milthorpe BK
    Biomaterials; 1997 Dec; 18(23):1523-9. PubMed ID: 9430334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the mechanical properties of hot isostatically pressed titania and titania-calcium phosphate composites.
    Li J; Forberg S; Hermansson L
    Biomaterials; 1991 May; 12(4):438-40. PubMed ID: 1888813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering.
    Li F; Jiang X; Shao Z; Zhu D; Luo Z
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30223566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering.
    Li J; Liao H; Hermansson L
    Biomaterials; 1996 Sep; 17(18):1787-90. PubMed ID: 8879517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved dispersion of SiC whisker in nano hydroxyapatite and effect of atmospheres on sintering of the SiC whisker reinforced nano hydroxyapatite composites.
    Zhao X; Yang J; Xin H; Wang X; Zhang L; He F; Liu Q; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():135-145. PubMed ID: 30033240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.
    Ataollahi Oshkour A; Pramanik S; Mehrali M; Yau YH; Tarlochan F; Abu Osman NA
    J Mech Behav Biomed Mater; 2015 Sep; 49():321-31. PubMed ID: 26072197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fibre Material and Fibre Roughness on the Pullout Behaviour of Metallic Micro Fibres Embedded in UHPC.
    Wiemer N; Wetzel A; Schleiting M; Krooß P; Vollmer M; Niendorf T; Böhm S; Middendorf B
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.
    Li F; Jiang X; Shao Z; Zhu D; Zhu M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29659504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of SiC fibres to vacuum plasma spraying and vacuum hot pressing during the fabrication of titanium matrix composites.
    Baker AM; Grant PS; Jenkins ML
    J Microsc; 1999 Nov; 196(# (Pt 2)):162-74. PubMed ID: 10540269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.
    Sprio S; Guicciardi S; Dapporto M; Melandri C; Tampieri A
    J Mech Behav Biomed Mater; 2013 Jan; 17():1-10. PubMed ID: 23122887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers.
    Suchanek W; Yashima M; Kakihana M; Yoshimura M
    Biomaterials; 1996 Sep; 17(17):1715-23. PubMed ID: 8866034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and Mechanical Properties of Graphene Oxide-Reinforced Titanium Matrix Composites Synthesized by Hot-Pressed Sintering.
    Liu J; Hu N; Liu X; Liu Y; Lv X; Wei L; Zheng S
    Nanoscale Res Lett; 2019 Mar; 14(1):114. PubMed ID: 30927118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylapatite and titanium: interfacial reactions.
    Ergun C; Doremus R; Lanford W
    J Biomed Mater Res A; 2003 Jun; 65(3):336-43. PubMed ID: 12746880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Microstructure and Mechanical Properties of Copper-Graphite Composites Reinforced with Single-Crystal α-Al₂O₃ Fibres by Hot Isostatic Pressing.
    Zhang G; Jiang X; Qiao C; Shao Z; Zhu D; Zhu M; Valcarcel V
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29891769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites.
    Chen YC; Ou SF
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioglass composites: a potential material for dental application.
    Gheysen G; Ducheyne P; Hench LL; de Meester P
    Biomaterials; 1983 Apr; 4(2):81-4. PubMed ID: 6860761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites.
    Sakka S; Bouaziz J; Ben Ayed F
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():92-101. PubMed ID: 24857470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.
    Tulinski M; Jurczyk M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8779-82. PubMed ID: 23421285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.