These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15348800)

  • 1. Effect of crosslinking agents on poly(ethylmethacrylate) bone cements.
    Deb S; Braden M; Bonfield W
    J Mater Sci Mater Med; 1997 Dec; 8(12):829-33. PubMed ID: 15348800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro adhesion and biocompatability of osteoblast-like cells to poly(methylmethacrylate) and poly(ethylmethacrylate) bone cements.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    J Mater Sci Mater Med; 2002 Mar; 13(3):311-4. PubMed ID: 15348630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers.
    De S; Vazquez B
    Biomaterials; 2001 Aug; 22(15):2177-81. PubMed ID: 11432598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent.
    Harper EJ; Braden M; Bonfield W
    J Mater Sci Mater Med; 2000 Aug; 11(8):491-7. PubMed ID: 15347999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel self-healing dental luting cements with microcapsules for indirect restorations.
    Wu J; Zhang Q; Weir MD; Oates TW; Zhou C; Chang X; Xu HHK
    J Dent; 2017 Nov; 66():76-82. PubMed ID: 28826985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric characterization of the formation of acrylic type bone cements.
    Yang JM; You JW; Chen HL; Shih CH
    J Biomed Mater Res; 1996; 33(2):83-8. PubMed ID: 8736026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement.
    Roether JA; Deb S
    J Mater Sci Mater Med; 2004 Apr; 15(4):413-8. PubMed ID: 15332609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiopacity in bone cements using an organo-bismuth compound.
    Deb S; Abdulghani S; Behiri JC
    Biomaterials; 2002 Aug; 23(16):3387-93. PubMed ID: 12099281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material.
    Yang JM; Lu CS; Hsu YG; Shih CH
    J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High strength bioresorbable bone plates: preparation, mechanical properties and in vitro analysis.
    Hasirci V; Lewandrowski KU; Bondre SP; Gresser JD; Trantolo DJ; Wise DL
    Biomed Mater Eng; 2000; 10(1):19-29. PubMed ID: 10950204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isothermal and non-isothermal polymerization of a new bone cement.
    Borzacchiello A; Ambrosio L; Nicolais L; Harper EJ; Tanner KE; Bonfield W
    J Mater Sci Mater Med; 1998 Jun; 9(6):317-24. PubMed ID: 15348874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high-viscosity, two-paste bioactive bone cements.
    Deb S; Aiyathurai L; Roether JA; Luklinska ZB
    Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer.
    Pascual B; Goñi I; Gurruchaga M
    J Biomed Mater Res; 1999; 48(4):447-57. PubMed ID: 10421686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.