These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15348831)

  • 1. Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials.
    Weiss P; Lapkowski M; Legeros RZ; Bouler JM; Jean A; Daculsi G
    J Mater Sci Mater Med; 1997 Oct; 8(10):621-9. PubMed ID: 15348831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS.
    Schmitt M; Weiss P; Bourges X; Amador del Valle G; Daculsi G
    Biomaterials; 2002 Jul; 23(13):2789-94. PubMed ID: 12059030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable bone substitute using a hydrophilic polymer.
    Weiss P; Gauthier O; Bouler JM; Grimandi G; Daculsi G
    Bone; 1999 Aug; 25(2 Suppl):67S-70S. PubMed ID: 10458279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery.
    Weiss P; Bohic S; Lapkowski M; Daculsi G
    J Biomed Mater Res; 1998 Jul; 41(1):167-70. PubMed ID: 9641637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites.
    Zandinejad AA; Atai M; Pahlevan A
    Dent Mater; 2006 Apr; 22(4):382-7. PubMed ID: 16055180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers.
    Senthil Muthu Kumar T; Rajini N; Obi Reddy K; Varada Rajulu A; Siengchin S; Ayrilmis N
    Int J Biol Macromol; 2018 Jun; 112():1310-1315. PubMed ID: 29408356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro contact wear of dental composites.
    Nagarajan VS; Jahanmir S; Thompson VP
    Dent Mater; 2004 Jan; 20(1):63-71. PubMed ID: 14698775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of osteoconductive biomaterials: calcium phosphates.
    LeGeros RZ
    Clin Orthop Relat Res; 2002 Feb; (395):81-98. PubMed ID: 11937868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial.
    Bohic S; Weiss P; Roger P; Daculsi G
    J Mater Sci Mater Med; 2001 Mar; 12(3):201-5. PubMed ID: 15348303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.
    Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some Applications of Vibrational Spectroscopy for the Analysis of Polymers and Polymer Composites.
    Bokobza L
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31288418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-porous thermally sintered nano silica as novel fillers for dental composites.
    Atai M; Pahlavan A; Moin N
    Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles.
    Sobczak-Kupiec A; Malina D; Piatkowski M; Krupa-Zuczek K; Wzorek Z; Tyliszczak B
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9302-11. PubMed ID: 23447993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a leucite-containing ceramic filler on the abrasive wear of dental composites.
    Atai M; Yassini E; Amini M; Watts DC
    Dent Mater; 2007 Sep; 23(9):1181-7. PubMed ID: 17507087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin sensitization study of two hydroxypropyl methylcellulose components (Benecel and E4M) of an injectable bone substitute in guinea pigs.
    Amouriq Y; Bourges X; Weiss P; Bosco J; Bouler JM; Daculsi G
    J Mater Sci Mater Med; 2002 Feb; 13(2):149-54. PubMed ID: 15348636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites.
    Amirouche-Korichi A; Mouzali M; Watts DC
    Dent Mater; 2009 Nov; 25(11):1411-8. PubMed ID: 19683808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zeolite fillers for resin-based composites with remineralizing potential.
    Okulus Z; Sandomierski M; Zielińska M; Buchwald T; Voelkel A
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():126-135. PubMed ID: 30453188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.