BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15349715)

  • 1. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid.
    Buchenau B; Thauer RK
    Arch Microbiol; 2004 Oct; 182(4):313-25. PubMed ID: 15349715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of serine hydroxymethyltransferase in methanogens.
    Lin Z; Sparling R
    Can J Microbiol; 1998 Jul; 44(7):652-6. PubMed ID: 9783425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri: a possible function in ribose-5-phosphate biosynthesis.
    Goenrich M; Thauer RK; Yurimoto H; Kato N
    Arch Microbiol; 2005 Oct; 184(1):41-8. PubMed ID: 16075199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Formyl-5,6,7,8-tetrahydromethanopterin is the intermediate in the process of methanogenesis in Methanosarcina barkeri.
    Keltjens JT; Brugman AJ; Kesseleer JM; te Brömmelstroet BW; van der Drift C; Vogels GD
    Biofactors; 1992 Apr; 3(4):249-55. PubMed ID: 1605834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1.
    Pomper BK; Vorholt JA; Chistoserdova L; Lidstrom ME; Thauer RK
    Eur J Biochem; 1999 Apr; 261(2):475-80. PubMed ID: 10215859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methenyltetrahydrofolate cyclohydrolase is rate limiting for the enzymatic conversion of 10-formyltetrahydrofolate to 5,10-methylenetetrahydrofolate in bifunctional dehydrogenase-cyclohydrolase enzymes.
    Pawelek PD; MacKenzie RE
    Biochemistry; 1998 Jan; 37(4):1109-15. PubMed ID: 9454603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4.
    Studer A; McAnulla C; Büchele R; Leisinger T; Vuilleumier S
    J Bacteriol; 2002 Jul; 184(13):3476-84. PubMed ID: 12057941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of a bacterial, bifunctional 5,10 methylene-tetrahydrofolate dehydrogenase/cyclohydrolase.
    Shen BW; Dyer DH; Huang JY; D'Ari L; Rabinowitz J; Stoddard BL
    Protein Sci; 1999 Jun; 8(6):1342-9. PubMed ID: 10386884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general method for generation and analysis of defined mutations in enzymes involved in a tetrahydrofolate-interconversion pathway.
    Barlowe CK; Appling DR
    Biofactors; 1989 Mar; 2(1):57-63. PubMed ID: 2679653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase.
    Kirksey TJ; Appling DR
    Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical map location of the Escherichia coli gene encoding the bifunctional enzyme 5,10-methylene-tetrahydrofolate dehydrogenase/5,10-methenyl-tetrahydrofolate cyclohydrolase.
    Dimri GP; Ames GF; D'Ari L; Rabinowitz JC
    J Bacteriol; 1991 Sep; 173(17):5251. PubMed ID: 1885508
    [No Abstract]   [Full Text] [Related]  

  • 14. The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
    Vorholt JA; Chistoserdova L; Lidstrom ME; Thauer RK
    J Bacteriol; 1998 Oct; 180(20):5351-6. PubMed ID: 9765566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, characterization, cloning, and amino acid sequence of the bifunctional enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase from Escherichia coli.
    D'Ari L; Rabinowitz JC
    J Biol Chem; 1991 Dec; 266(35):23953-8. PubMed ID: 1748668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of folate-dependent enzymes from rabbit liver.
    Schirch V
    Methods Enzymol; 1997; 281():146-61. PubMed ID: 9250979
    [No Abstract]   [Full Text] [Related]  

  • 17. Properties of tetrahydropteroylpentaglutamate bound to 10-formyltetrahydrofolate dehydrogenase.
    Kim DW; Huang T; Schirch D; Schirch V
    Biochemistry; 1996 Dec; 35(49):15772-83. PubMed ID: 8961940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum.
    Chien YT; Zinder SH
    J Bacteriol; 1994 Nov; 176(21):6590-8. PubMed ID: 7961410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate.
    Dev IK; Harvey RJ
    J Biol Chem; 1978 Jun; 253(12):4245-53. PubMed ID: 350870
    [No Abstract]   [Full Text] [Related]  

  • 20. Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1994 Jun; 33(23):7166-73. PubMed ID: 8003483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.