BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15350047)

  • 1. Inverted colloidal crystals as three-dimensional cell scaffolds.
    Kotov NA; Liu Y; Wang S; Cumming C; Eghtedari M; Vargas G; Motamedi M; Nichols J; Cortiella J
    Langmuir; 2004 Sep; 20(19):7887-92. PubMed ID: 15350047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell distribution profiles in three-dimensional scaffolds with inverted-colloidal-crystal geometry: modeling and experimental investigations.
    Shanbhag S; Wang S; Kotov NA
    Small; 2005 Dec; 1(12):1208-14. PubMed ID: 17193421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds.
    Lee J; Cuddihy MJ; Cater GM; Kotov NA
    Biomaterials; 2009 Sep; 30(27):4687-94. PubMed ID: 19524294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry.
    Shanbhag S; Woo Lee J; Kotov N
    Biomaterials; 2005 Sep; 26(27):5581-5. PubMed ID: 15860215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation.
    Lode A; Bernhardt A; Gelinsky M
    J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
    Baker SC; Atkin N; Gunning PA; Granville N; Wilson K; Wilson D; Southgate J
    Biomaterials; 2006 Jun; 27(16):3136-46. PubMed ID: 16473404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds.
    Liu Y; Wang S; Krouse J; Kotov NA; Eghtedari M; Vargas G; Motamedi M
    J Biomed Mater Res A; 2007 Oct; 83(1):1-9. PubMed ID: 17335022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel cell culture device enabling three-dimensional cell growth and improved cell function.
    Bokhari M; Carnachan RJ; Cameron NR; Przyborski SA
    Biochem Biophys Res Commun; 2007 Mar; 354(4):1095-100. PubMed ID: 17276400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network.
    Huang H; Oizumi S; Kojima N; Niino T; Sakai Y
    Biomaterials; 2007 Sep; 28(26):3815-23. PubMed ID: 17544499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.
    Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M
    J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T
    Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional colloidal crystals with a well-defined architecture.
    Reculusa S; Massé P; Ravaine S
    J Colloid Interface Sci; 2004 Nov; 279(2):471-8. PubMed ID: 15464813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering scaffolds based on photocured dimethacrylate polymers for in vitro optical imaging.
    Landis FA; Stephens JS; Cooper JA; Cicerone MT; Lin-Gibson S
    Biomacromolecules; 2006 Jun; 7(6):1751-7. PubMed ID: 16768394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.