These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Zhang H; Cui H Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685 [TBL] [Abstract][Full Text] [Related]
5. Ultrathin organically modified silica layer coated carbon nanotubes: fabrication, characterization and electrical insulating properties. Pumera M; Sasaki T; Smíd B Chem Asian J; 2009 May; 4(5):662-7. PubMed ID: 19263459 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle. Zhang L; Yi M Bioprocess Biosyst Eng; 2009 Jun; 32(4):485-92. PubMed ID: 18941796 [TBL] [Abstract][Full Text] [Related]
7. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Yang M; Yang Y; Yang H; Shen G; Yu R Biomaterials; 2006 Jan; 27(2):246-55. PubMed ID: 16026820 [TBL] [Abstract][Full Text] [Related]
8. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Wang Y; Joshi PP; Hobbs KL; Johnson MB; Schmidtke DW Langmuir; 2006 Nov; 22(23):9776-83. PubMed ID: 17073511 [TBL] [Abstract][Full Text] [Related]
10. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Yang S; Wang X; Yang H; Sun Y; Liu Y J Hazard Mater; 2012 Sep; 233-234():18-24. PubMed ID: 22819477 [TBL] [Abstract][Full Text] [Related]
11. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Li F; Wang Z; Shan C; Song J; Han D; Niu L Biosens Bioelectron; 2009 Feb; 24(6):1765-70. PubMed ID: 18951009 [TBL] [Abstract][Full Text] [Related]
12. Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes. Kumar S; Kaur I; Dharamvir K; Bharadwaj LM J Colloid Interface Sci; 2012 Mar; 369(1):23-7. PubMed ID: 22218340 [TBL] [Abstract][Full Text] [Related]
13. One-dimensional self-assembly of metallic nanostructures on single-walled carbon-nanotube bundles. Huang W; Chen H; Zuo JM Small; 2006 Dec; 2(12):1418-21. PubMed ID: 17192997 [No Abstract] [Full Text] [Related]
14. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Zhao H; Ju H Anal Biochem; 2006 Mar; 350(1):138-44. PubMed ID: 16430853 [TBL] [Abstract][Full Text] [Related]
15. Thin films composed of multiwalled carbon nanotubes, gold nanoparticles and myoglobin for humidity detection at room temperature. Qi ZM; Wei M; Honma I; Zhou H Chemphyschem; 2007 Feb; 8(2):264-9. PubMed ID: 17221901 [TBL] [Abstract][Full Text] [Related]
16. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Chen S; Yuan R; Chai Y; Zhang L; Wang N; Li X Biosens Bioelectron; 2007 Feb; 22(7):1268-74. PubMed ID: 16820288 [TBL] [Abstract][Full Text] [Related]
17. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Dai X; Wildgoose GG; Salter C; Crossley A; Compton RG Anal Chem; 2006 Sep; 78(17):6102-8. PubMed ID: 16944890 [TBL] [Abstract][Full Text] [Related]
18. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Tong H; McGee JK; Saxena RK; Kodavanti UP; Devlin RB; Gilmour MI Toxicol Appl Pharmacol; 2009 Sep; 239(3):224-32. PubMed ID: 19481103 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopy and defect identification for fluorinated carbon nanotubes. Bittencourt C; Van Lier G; Ke X; Suarez-Martinez I; Felten A; Ghijsen J; Van Tendeloo G; Ewels CP Chemphyschem; 2009 Apr; 10(6):920-5. PubMed ID: 19266519 [TBL] [Abstract][Full Text] [Related]
20. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. Ou YY; Huang MH J Phys Chem B; 2006 Feb; 110(5):2031-6. PubMed ID: 16471779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]