These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 15350115)
1. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell. Brune A; Jeong G; Liddell PA; Sotomura T; Moore TA; Moore AL; Gust D Langmuir; 2004 Sep; 20(19):8366-71. PubMed ID: 15350115 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-assisted reforming of glucose to hydrogen in a photoelectrochemical cell. Hambourger M; Brune A; Gust D; Moore AL; Moore TA Photochem Photobiol; 2005; 81(4):1015-20. PubMed ID: 15960593 [TBL] [Abstract][Full Text] [Related]
3. Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell. Hambourger M; Liddell PA; Gust D; Moore AL; Moore TA Photochem Photobiol Sci; 2007 Apr; 6(4):431-7. PubMed ID: 17404638 [TBL] [Abstract][Full Text] [Related]
4. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. Wang GL; Xu JJ; Chen HY Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483 [TBL] [Abstract][Full Text] [Related]
5. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. Hambourger M; Gervaldo M; Svedruzic D; King PW; Gust D; Ghirardi M; Moore AL; Moore TA J Am Chem Soc; 2008 Feb; 130(6):2015-22. PubMed ID: 18205358 [TBL] [Abstract][Full Text] [Related]
6. Photoelectrochemical biofuel cell using porphyrin-sensitized nanocrystalline titanium dioxide mesoporous film as photoanode. Wang K; Yang J; Feng L; Zhang Y; Liang L; Xing W; Liu C Biosens Bioelectron; 2012 Feb; 32(1):177-82. PubMed ID: 22221794 [TBL] [Abstract][Full Text] [Related]
7. Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanode. Suzuki T; Ueno H; Nemoto J; Fujii Y; Hoshino M; Kaneko M Analyst; 2009 Aug; 134(8):1541-3. PubMed ID: 20448917 [TBL] [Abstract][Full Text] [Related]
8. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486 [TBL] [Abstract][Full Text] [Related]
9. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance. Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148 [TBL] [Abstract][Full Text] [Related]
10. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
11. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO₂ nanoparticles. Tu W; Dong Y; Lei J; Ju H Anal Chem; 2010 Oct; 82(20):8711-6. PubMed ID: 20857916 [TBL] [Abstract][Full Text] [Related]
12. Solar energy conversion in a photoelectrochemical biofuel cell. Hambourger M; Kodis G; Vaughn MD; Moore GF; Gust D; Moore AL; Moore TA Dalton Trans; 2009 Dec; (45):9979-89. PubMed ID: 19904423 [TBL] [Abstract][Full Text] [Related]
13. Photoelectrochemical conversion of NO3(-) to N2 by using a photoelectrochemical cell composed of a nanoporous TiO2 film photoanode and an O2 reducing cathode. Saito R; Ueno H; Nemoto J; Fujii Y; Izuoka A; Kaneko M Chem Commun (Camb); 2009 Jun; (22):3231-3. PubMed ID: 19587923 [TBL] [Abstract][Full Text] [Related]
14. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981 [TBL] [Abstract][Full Text] [Related]
15. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell. Zhou M; Deng L; Wen D; Shang L; Jin L; Dong S Biosens Bioelectron; 2009 May; 24(9):2904-8. PubMed ID: 19321330 [TBL] [Abstract][Full Text] [Related]
16. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
17. Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. Rochford J; Chu D; Hagfeldt A; Galoppini E J Am Chem Soc; 2007 Apr; 129(15):4655-65. PubMed ID: 17385856 [TBL] [Abstract][Full Text] [Related]
18. Efficient co-sensitization of nanocrystalline TiO(2) films by organic sensitizers. Yum JH; Jang SR; Walter P; Geiger T; Nüesch F; Kim S; Ko J; Grätzel M; Nazeeruddin MK Chem Commun (Camb); 2007 Nov; (44):4680-2. PubMed ID: 17989831 [TBL] [Abstract][Full Text] [Related]
19. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode. Han L; Bai L; Zhu C; Wang Y; Dong S Chem Commun (Camb); 2012 Jun; 48(49):6103-5. PubMed ID: 22588223 [TBL] [Abstract][Full Text] [Related]
20. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films. Milsom EV; Dash HA; Jenkins TA; Opallo M; Marken F Bioelectrochemistry; 2007 May; 70(2):221-7. PubMed ID: 17056301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]