These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 15350278)
21. A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko. Authier S; Manley GA Hear Res; 1995 Jan; 82(1):1-13. PubMed ID: 7744705 [TBL] [Abstract][Full Text] [Related]
22. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage. Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838 [TBL] [Abstract][Full Text] [Related]
23. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage. Weiss TF; Leong R Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381 [TBL] [Abstract][Full Text] [Related]
24. Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Köppl C; Authier S Hear Res; 1995 Jan; 82(1):14-25. PubMed ID: 7744709 [TBL] [Abstract][Full Text] [Related]
26. [The inner ear as an electrosensory sense organ]. Mark HE; Rattay F Laryngorhinootologie; 1991 Jul; 70(7):340-9. PubMed ID: 1654912 [TBL] [Abstract][Full Text] [Related]
28. The frequency response of rat vibrissae to sound. Shatz LF; Christensen CW J Acoust Soc Am; 2008 May; 123(5):2918-27. PubMed ID: 18529208 [TBL] [Abstract][Full Text] [Related]
29. A two-layer outer hair cell model with orthotropic piezoelectric properties: correlation of cell resonant frequencies with tuning in the cochlea. Lim KM; Li H J Biomech; 2007; 40(6):1362-71. PubMed ID: 16824534 [TBL] [Abstract][Full Text] [Related]
30. General pattern and morphological specializations of the avian cochlea. Fischer FP Scanning Microsc; 1994; 8(2):351-63; discussion 363-4. PubMed ID: 7701304 [TBL] [Abstract][Full Text] [Related]
31. Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ. Flock A; Strelioff D Nature; 1984 Aug 16-22; 310(5978):597-9. PubMed ID: 6462248 [TBL] [Abstract][Full Text] [Related]
32. Subdiffusion in hair bundle dynamics: the role of protein conformational fluctuations. Sharma R; Cherayil BJ J Chem Phys; 2012 Dec; 137(21):215102. PubMed ID: 23231261 [TBL] [Abstract][Full Text] [Related]
33. Endolymphatic and intracellular resting potential in the alligator lizard cochlea. Weiss TF; Altmann DW; Mulroy MJ Pflugers Arch; 1978 Jan; 373(1):77-84. PubMed ID: 565037 [TBL] [Abstract][Full Text] [Related]
35. Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea. Fettiplace R Trends Neurosci; 2020 Feb; 43(2):88-102. PubMed ID: 31954526 [TBL] [Abstract][Full Text] [Related]
36. Effectiveness of hair bundle motility as the cochlear amplifier. Sul B; Iwasa KH Biophys J; 2009 Nov; 97(10):2653-63. PubMed ID: 19917218 [TBL] [Abstract][Full Text] [Related]
37. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Freeman DM; Weiss TF Hear Res; 1990 Sep; 48(1-2):37-67. PubMed ID: 2249961 [TBL] [Abstract][Full Text] [Related]
38. Auditory stereocilia in the alligator lizard. Mulroy MJ; Williams RS Hear Res; 1987; 25(1):11-21. PubMed ID: 3804856 [TBL] [Abstract][Full Text] [Related]
39. Superposition of hydrodynamic forces on a hair bundle. Freeman DM; Weiss TF Hear Res; 1990 Sep; 48(1-2):1-15. PubMed ID: 2249953 [TBL] [Abstract][Full Text] [Related]
40. Quantitative studies of auditory hair cells and nerves in lizards. Miller MR J Comp Neurol; 1985 Feb; 232(1):1-24. PubMed ID: 3973079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]