BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15350431)

  • 1. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone.
    Swietlik J; Sikorska E
    Water Res; 2004 Oct; 38(17):3791-9. PubMed ID: 15350431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of natural organic matter fractions with chlorine dioxide and ozone.
    Swietlik J; Dabrowska A; Raczyk-Stanisławiak U; Nawrocki J
    Water Res; 2004 Feb; 38(3):547-58. PubMed ID: 14723923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability of organic by-products after natural organic matter oxidation with ClO2--case study.
    Raczyk-Stanisławiak U; Swietlik J; Dabrowska A; Nawrocki J
    Water Res; 2004 Feb; 38(4):1044-54. PubMed ID: 14769425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation.
    Zhang T; Lu J; Ma J; Qiang Z
    Chemosphere; 2008 Mar; 71(5):911-21. PubMed ID: 18190948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of oxidation on fulvic acids composition and biodegradability.
    Kozyatnyk I; Świetlik J; Raczyk-Stanisławiak U; Dąbrowska A; Klymenko N; Nawrocki J
    Chemosphere; 2013 Aug; 92(10):1335-42. PubMed ID: 23746389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol.
    Parga JR; Shukla SS; Carrillo-Pedroza FR
    Waste Manag; 2003; 23(2):183-91. PubMed ID: 12623093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of biodegradability of NOM after ozonation.
    Yavich AA; Lee KH; Chen KC; Pape L; Masten SJ
    Water Res; 2004 Jul; 38(12):2839-46. PubMed ID: 15223277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of disinfection on aquatic biodegradable organic carbon formation.
    Swietlik J; Raczyk-Stanisławiak U; Nawrocki J
    Water Res; 2009 Feb; 43(2):463-73. PubMed ID: 18980774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water.
    Zhang T; Lu J; Ma J; Qiang Z
    Water Res; 2008 Mar; 42(6-7):1563-70. PubMed ID: 18048076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of water quality and NOM character on the ozonation of MIB and geosmin.
    Ho L; Croué JP; Newcombe G
    Water Sci Technol; 2004; 49(9):249-55. PubMed ID: 15237632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence technique for the characterization of natural organic matter in river water.
    Ahmad UK; Ulang Z; Yusop Z; Fong TL
    Water Sci Technol; 2002; 46(9):117-25. PubMed ID: 12448460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodegradation of natural organic matter from diverse freshwater sources.
    Winter AR; Fish TA; Playle RC; Smith DS; Curtis PJ
    Aquat Toxicol; 2007 Aug; 84(2):215-22. PubMed ID: 17640746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water.
    Korak JA; Wert EC; Rosario-Ortiz FL
    Water Res; 2015 Jan; 68():432-43. PubMed ID: 25462750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NOM characteristics on brominated organics formation by ozonation.
    Huang WJ; Chen LY; Peng HS
    Environ Int; 2004 Feb; 29(8):1049-55. PubMed ID: 14680887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC.
    Baghoth SA; Sharma SK; Amy GL
    Water Res; 2011 Jan; 45(2):797-809. PubMed ID: 20889181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction mechanism of catalytic oxidation with hydrogen peroxide and ozone in aqueous solution.
    Park JS; Choi H; Ahn KH
    Water Sci Technol; 2003; 47(1):179-84. PubMed ID: 12578192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Low molecular weight oxidation by-products produced during catalytic ozonation with ferric hydroxide of NOM fractions isolated from filtrated water].
    Lu JF; Qiu J; Ma J; Zhang T; Chen ZL; Wang H
    Huan Jing Ke Xue; 2009 Mar; 30(3):765-70. PubMed ID: 19432325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.
    Park H; Kim Y; An B; Choi H
    Water Res; 2012 Nov; 46(18):5861-70. PubMed ID: 22944203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.
    Ramseier MK; Peter A; Traber J; von Gunten U
    Water Res; 2011 Feb; 45(5):2002-10. PubMed ID: 21220144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.