BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15350499)

  • 1. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars.
    Barbehenn RV; Stannard J
    J Insect Physiol; 2004 Sep; 50(9):783-90. PubMed ID: 15350499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars.
    Barbehenn R; Dodick T; Poopat U; Spencer B
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Barbehenn RV; Maben RE; Knoester JJ
    Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria.
    Barbehenn RV; Kochmanski J; Menachem B; Poirier LM
    Arch Insect Biochem Physiol; 2013 Oct; 84(2):90-103. PubMed ID: 24038202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.
    Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM
    J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation.
    Barbehenn RV; Martin MM
    J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry.
    Barbehenn RV; Poopat U; Spencer B
    Insect Biochem Mol Biol; 2003 Jan; 33(1):125-30. PubMed ID: 12459207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress?
    Krishnan N; Kodrík D
    J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves.
    Barbehenn RV; Walker AC; Uddin F
    J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera.
    Campbell PM; Cao AT; Hines ER; East PD; Gordon KH
    Insect Biochem Mol Biol; 2008 Oct; 38(10):950-8. PubMed ID: 18760362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
    Barbehenn R; Weir Q; Salminen JP
    J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains.
    Konno K; Shimura S; Ueno C; Arakawa T; Nakamura M
    Phytochemistry; 2018 Mar; 147():211-219. PubMed ID: 29406091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals.
    Barbehenn RV
    Arch Insect Biochem Physiol; 2001 Jun; 47(2):86-99. PubMed ID: 11376455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets.
    Pinto-Tomás AA; Sittenfeld A; Uribe-Lorío L; Chavarría F; Mora M; Janzen DH; Goodman RM; Simon HM
    Environ Entomol; 2011 Oct; 40(5):1111-22. PubMed ID: 22251723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata.
    Krishnan N; Kodrík D; Turanli F; Sehnal F
    J Insect Physiol; 2007 Jan; 53(1):67-74. PubMed ID: 17126855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry.
    Karowe DN
    Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.
    Agrawal S; Kelkenberg M; Begum K; Steinfeld L; Williams CE; Kramer KJ; Beeman RW; Park Y; Muthukrishnan S; Merzendorfer H
    Insect Biochem Mol Biol; 2014 Jun; 49():24-34. PubMed ID: 24680676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.