These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 15350499)
1. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. Barbehenn RV; Stannard J J Insect Physiol; 2004 Sep; 50(9):783-90. PubMed ID: 15350499 [TBL] [Abstract][Full Text] [Related]
2. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars. Barbehenn R; Dodick T; Poopat U; Spencer B Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620 [TBL] [Abstract][Full Text] [Related]
3. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227 [TBL] [Abstract][Full Text] [Related]
4. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Barbehenn RV; Maben RE; Knoester JJ Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189 [TBL] [Abstract][Full Text] [Related]
5. Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria. Barbehenn RV; Kochmanski J; Menachem B; Poirier LM Arch Insect Biochem Physiol; 2013 Oct; 84(2):90-103. PubMed ID: 24038202 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299 [TBL] [Abstract][Full Text] [Related]
7. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. Barbehenn RV; Martin MM J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724 [TBL] [Abstract][Full Text] [Related]
8. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry. Barbehenn RV; Poopat U; Spencer B Insect Biochem Mol Biol; 2003 Jan; 33(1):125-30. PubMed ID: 12459207 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? Krishnan N; Kodrík D J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709 [TBL] [Abstract][Full Text] [Related]
10. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves. Barbehenn RV; Walker AC; Uddin F J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024 [TBL] [Abstract][Full Text] [Related]
11. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684 [TBL] [Abstract][Full Text] [Related]
12. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar. Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Campbell PM; Cao AT; Hines ER; East PD; Gordon KH Insect Biochem Mol Biol; 2008 Oct; 38(10):950-8. PubMed ID: 18760362 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. Barbehenn R; Weir Q; Salminen JP J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142 [TBL] [Abstract][Full Text] [Related]
15. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains. Konno K; Shimura S; Ueno C; Arakawa T; Nakamura M Phytochemistry; 2018 Mar; 147():211-219. PubMed ID: 29406091 [TBL] [Abstract][Full Text] [Related]
16. Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Barbehenn RV Arch Insect Biochem Physiol; 2001 Jun; 47(2):86-99. PubMed ID: 11376455 [TBL] [Abstract][Full Text] [Related]
17. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Pinto-Tomás AA; Sittenfeld A; Uribe-Lorío L; Chavarría F; Mora M; Janzen DH; Goodman RM; Simon HM Environ Entomol; 2011 Oct; 40(5):1111-22. PubMed ID: 22251723 [TBL] [Abstract][Full Text] [Related]
18. Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. Krishnan N; Kodrík D; Turanli F; Sehnal F J Insect Physiol; 2007 Jan; 53(1):67-74. PubMed ID: 17126855 [TBL] [Abstract][Full Text] [Related]
19. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Karowe DN Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836 [TBL] [Abstract][Full Text] [Related]
20. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Agrawal S; Kelkenberg M; Begum K; Steinfeld L; Williams CE; Kramer KJ; Beeman RW; Park Y; Muthukrishnan S; Merzendorfer H Insect Biochem Mol Biol; 2014 Jun; 49():24-34. PubMed ID: 24680676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]