BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15350533)

  • 1. Structural changes in human type I collagen fibrils investigated by force spectroscopy.
    Graham JS; Vomund AN; Phillips CL; Grandbois M
    Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural investigations on native collagen type I fibrils using AFM.
    Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S
    Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical properties of thin films of type I collagen fibrils.
    Chung KH; Bhadriraju K; Spurlin TA; Cook RF; Plant AL
    Langmuir; 2010 Mar; 26(5):3629-36. PubMed ID: 20104910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model.
    Puxkandl R; Zizak I; Paris O; Keckes J; Tesch W; Bernstorff S; Purslow P; Fratzl P
    Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):191-7. PubMed ID: 11911776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity.
    Minary-Jolandan M; Yu MF
    Biomacromolecules; 2009 Sep; 10(9):2565-70. PubMed ID: 19694448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM.
    Friedrichs J; Taubenberger A; Franz CM; Muller DJ
    J Mol Biol; 2007 Sep; 372(3):594-607. PubMed ID: 17686490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations.
    Jastrzebska M; Zalewska-Rejdak J; Wrzalik R; Kocot A; Mroz I; Barwinski B; Turek A; Cwalina B
    J Biomed Mater Res A; 2006 Jul; 78(1):148-56. PubMed ID: 16619255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro regulation of single collagen fibril length by buffer compositions and temperature.
    Liu MY; Yeh ML; Luo ZP
    Biomed Mater Eng; 2005; 15(6):413-20. PubMed ID: 16308457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution AFM imaging of intact and fractured trabecular bone.
    Hassenkam T; Fantner GE; Cutroni JA; Weaver JC; Morse DE; Hansma PK
    Bone; 2004 Jul; 35(1):4-10. PubMed ID: 15207735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale measurements of the assembly of collagen to fibrils.
    Yadavalli VK; Svintradze DV; Pidaparti RM
    Int J Biol Macromol; 2010 May; 46(4):458-64. PubMed ID: 20206203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between collagen IX and biglycan measured by atomic force microscopy.
    Chen CH; Yeh ML; Geyer M; Wang GJ; Huang MH; Heggeness MH; Höök M; Luo ZP
    Biochem Biophys Res Commun; 2006 Jan; 339(1):204-8. PubMed ID: 16293224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril.
    Vesentini S; Redaelli A; Montevecchi FM
    J Biomech; 2005 Mar; 38(3):433-43. PubMed ID: 15652541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunogold detection of types I and II chondrocyte collagen fibrils: an in situ atomic force microscopic investigation.
    Arntz Y; Jourdainne L; Greiner-Wacker G; Rinckenbach S; Ogier J; Voegel JC; Lavalle P; Vautier D
    Microsc Res Tech; 2006 Apr; 69(4):283-90. PubMed ID: 16586488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural characteristics of extracellular matrix produced by stromal fibroblasts.
    Crabb RA; Chau EP; Decoteau DM; Hubel A
    Ann Biomed Eng; 2006 Oct; 34(10):1615-27. PubMed ID: 17016762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics.
    Aladin DM; Cheung KM; Ngan AH; Chan D; Leung VY; Lim CT; Luk KD; Lu WW
    J Orthop Res; 2010 Apr; 28(4):497-502. PubMed ID: 19862800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the SPARC binding sites on collagen I and procollagen I by atomic force microscopy.
    Wang H; Fertala A; Ratner BD; Sage EH; Jiang S
    Anal Chem; 2005 Nov; 77(21):6765-71. PubMed ID: 16255572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils.
    Jaisson S; Lorimier S; Ricard-Blum S; Sockalingum GD; Delevallée-Forte C; Kegelaer G; Manfait M; Garnotel R; Gillery P
    Chem Biol; 2006 Feb; 13(2):149-59. PubMed ID: 16492563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.