BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15350778)

  • 1. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.
    Rondelli G; Torricelli P; Fini M; Giardino R
    Biomaterials; 2005 Mar; 26(7):739-44. PubMed ID: 15350778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel.
    Rondelli G; Torricelli P; Fini M; Rimondini L; Giardino R
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):320-4. PubMed ID: 16850480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative corrosion study of "Ni-free" austenitic stainless steels in view of medical applications.
    Reclaru L; Ziegenhagen R; Eschler PY; Blatter A; LemaƮtre J
    Acta Biomater; 2006 Jul; 2(4):433-44. PubMed ID: 16765883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.
    Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T
    Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repassivation of a high chromium stainless steel orthopaedic alloy.
    Karov J; Sinclair A; Hinberg I
    Biomed Mater Eng; 2002; 12(4):375-86. PubMed ID: 12652032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.
    Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications.
    Shih CC; Shih CM; Su YY; Lin SJ
    J Biomed Mater Res A; 2003 Dec; 67(4):1320-8. PubMed ID: 14624519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on biocompatibility of MIM 316L stainless steel].
    Wang G; Zhu S; Li Y; Zhao Y; Zhou K; Huang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):329-31. PubMed ID: 17591253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.
    Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi-Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Tayebi L
    PLoS One; 2013; 8(4):e61633. PubMed ID: 23630603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins.
    Yu WQ; Qiu J; Zhang FQ
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):400-5. PubMed ID: 21377339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.
    Alvarez K; Hyun SK; Fujimoto S; Nakajima H
    J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.