BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 15351653)

  • 1. Conformational prerequisites for formation of amyloid fibrils from histones.
    Munishkina LA; Fink AL; Uversky VN
    J Mol Biol; 2004 Sep; 342(4):1305-24. PubMed ID: 15351653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid fibril formation by human stefin B: influence of pH and TFE on fibril growth and morphology.
    Zerovnik E; Skarabot M; Skerget K; Giannini S; Stoka V; Jenko-Kokalj S; Staniforth RA
    Amyloid; 2007 Sep; 14(3):237-47. PubMed ID: 17701471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additional supra-self-assembly of human serum albumin under amyloid-like-forming solution conditions.
    Juárez J; Taboada P; Goy-López S; Cambón A; Madec MB; Yeates SG; Mosquera V
    J Phys Chem B; 2009 Sep; 113(36):12391-9. PubMed ID: 19681594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments.
    Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E
    Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition.
    Andersen CB; Otzen D; Christiansen G; Rischel C
    Biochemistry; 2007 Jun; 46(24):7314-24. PubMed ID: 17523599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN.
    Souillac PO; Uversky VN; Fink AL
    Biochemistry; 2003 Jul; 42(26):8094-104. PubMed ID: 12834361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of electrostatic interactions on the fibrillation process of human serum albumin.
    Juárez J; López SG; Cambón A; Taboada P; Mosquera V
    J Phys Chem B; 2009 Jul; 113(30):10521-9. PubMed ID: 19572666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting.
    Pedersen JS; Dikov D; Flink JL; Hjuler HA; Christiansen G; Otzen DE
    J Mol Biol; 2006 Jan; 355(3):501-23. PubMed ID: 16321400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded.
    Weinreb PH; Zhen W; Poon AW; Conway KA; Lansbury PT
    Biochemistry; 1996 Oct; 35(43):13709-15. PubMed ID: 8901511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein.
    Kumar S; Udgaonkar JB
    Biochemistry; 2009 Jul; 48(27):6441-9. PubMed ID: 19505087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein dissection enhances the amyloidogenic properties of alpha-lactalbumin.
    de Laureto PP; Frare E; Battaglia F; Mossuto MF; Uversky VN; Fontana A
    FEBS J; 2005 May; 272(9):2176-88. PubMed ID: 15853802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.