These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 15352059)
1. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Yamane-Ohnuki N; Kinoshita S; Inoue-Urakubo M; Kusunoki M; Iida S; Nakano R; Wakitani M; Niwa R; Sakurada M; Uchida K; Shitara K; Satoh M Biotechnol Bioeng; 2004 Sep; 87(5):614-22. PubMed ID: 15352059 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Malphettes L; Freyvert Y; Chang J; Liu PQ; Chan E; Miller JC; Zhou Z; Nguyen T; Tsai C; Snowden AW; Collingwood TN; Gregory PD; Cost GJ Biotechnol Bioeng; 2010 Aug; 106(5):774-83. PubMed ID: 20564614 [TBL] [Abstract][Full Text] [Related]
3. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310 [TBL] [Abstract][Full Text] [Related]
4. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Kanda Y; Yamane-Ohnuki N; Sakai N; Yamano K; Nakano R; Inoue M; Misaka H; Iida S; Wakitani M; Konno Y; Yano K; Shitara K; Hosoi S; Satoh M Biotechnol Bioeng; 2006 Jul; 94(4):680-8. PubMed ID: 16609957 [TBL] [Abstract][Full Text] [Related]
5. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. Kanda Y; Imai-Nishiya H; Kuni-Kamochi R; Mori K; Inoue M; Kitajima-Miyama K; Okazaki A; Iida S; Shitara K; Satoh M J Biotechnol; 2007 Jun; 130(3):300-10. PubMed ID: 17559959 [TBL] [Abstract][Full Text] [Related]
6. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319 [TBL] [Abstract][Full Text] [Related]
7. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Mori K; Kuni-Kamochi R; Yamane-Ohnuki N; Wakitani M; Yamano K; Imai H; Kanda Y; Niwa R; Iida S; Uchida K; Shitara K; Satoh M Biotechnol Bioeng; 2004 Dec; 88(7):901-8. PubMed ID: 15515168 [TBL] [Abstract][Full Text] [Related]
8. Short-hairpin-RNA-mediated silencing of fucosyltransferase 8 in Chinese-hamster ovary cells for the production of antibodies with enhanced antibody immune effector function. Beuger V; Künkele KP; Koll H; Gärtner A; Bähner M; Burtscher H; Klein C Biotechnol Appl Biochem; 2009 May; 53(Pt 1):31-7. PubMed ID: 19032154 [TBL] [Abstract][Full Text] [Related]
9. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Davies J; Jiang L; Pan LZ; LaBarre MJ; Anderson D; Reff M Biotechnol Bioeng; 2001 Aug; 74(4):288-94. PubMed ID: 11410853 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [TBL] [Abstract][Full Text] [Related]
11. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Iida S; Misaka H; Inoue M; Shibata M; Nakano R; Yamane-Ohnuki N; Wakitani M; Yano K; Shitara K; Satoh M Clin Cancer Res; 2006 May; 12(9):2879-87. PubMed ID: 16675584 [TBL] [Abstract][Full Text] [Related]
12. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):93-103. PubMed ID: 16236307 [TBL] [Abstract][Full Text] [Related]
13. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Ferrara C; Brünker P; Suter T; Moser S; Püntener U; Umaña P Biotechnol Bioeng; 2006 Apr; 93(5):851-61. PubMed ID: 16435400 [TBL] [Abstract][Full Text] [Related]
14. Biallelic gene knockouts in Chinese hamster ovary cells. Yamane-Ohnuki N; Yamano K; Satoh M Methods Mol Biol; 2008; 435():1-16. PubMed ID: 18370064 [TBL] [Abstract][Full Text] [Related]
15. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. Shinkawa T; Nakamura K; Yamane N; Shoji-Hosaka E; Kanda Y; Sakurada M; Uchida K; Anazawa H; Satoh M; Yamasaki M; Hanai N; Shitara K J Biol Chem; 2003 Jan; 278(5):3466-73. PubMed ID: 12427744 [TBL] [Abstract][Full Text] [Related]
16. Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via Zong H; Han L; Ding K; Wang J; Sun T; Zhang X; Cagliero C; Jiang H; Xie Y; Xu J; Zhang B; Zhu J Eng Life Sci; 2017 Jul; 17(7):801-808. PubMed ID: 32624826 [TBL] [Abstract][Full Text] [Related]
17. Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. Imai-Nishiya H; Mori K; Inoue M; Wakitani M; Iida S; Shitara K; Satoh M BMC Biotechnol; 2007 Nov; 7():84. PubMed ID: 18047682 [TBL] [Abstract][Full Text] [Related]
18. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Niwa R; Sakurada M; Kobayashi Y; Uehara A; Matsushima K; Ueda R; Nakamura K; Shitara K Clin Cancer Res; 2005 Mar; 11(6):2327-36. PubMed ID: 15788684 [TBL] [Abstract][Full Text] [Related]
19. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Biochem; 2006 Sep; 140(3):359-68. PubMed ID: 16861252 [TBL] [Abstract][Full Text] [Related]
20. Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. Wright A; Morrison SL J Immunol; 1998 Apr; 160(7):3393-402. PubMed ID: 9531299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]