BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 15352164)

  • 1. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression.
    Cen B; Selvaraj A; Prywes R
    J Cell Biochem; 2004 Sep; 93(1):74-82. PubMed ID: 15352164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation.
    Selvaraj A; Prywes R
    J Biol Chem; 2003 Oct; 278(43):41977-87. PubMed ID: 14565952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.
    Cen B; Selvaraj A; Burgess RC; Hitzler JK; Ma Z; Morris SW; Prywes R
    Mol Cell Biol; 2003 Sep; 23(18):6597-608. PubMed ID: 12944485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent.
    Selvaraj A; Prywes R
    BMC Mol Biol; 2004 Aug; 5():13. PubMed ID: 15329155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells.
    Du KL; Chen M; Li J; Lepore JJ; Mericko P; Parmacek MS
    J Biol Chem; 2004 Apr; 279(17):17578-86. PubMed ID: 14970199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-specific signaling mechanism that links actin dynamics to serum response factor.
    Kuwahara K; Barrientos T; Pipes GC; Li S; Olson EN
    Mol Cell Biol; 2005 Apr; 25(8):3173-81. PubMed ID: 15798203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation and repression of cellular immediate early genes by serum response factor cofactors.
    Lee SM; Vasishtha M; Prywes R
    J Biol Chem; 2010 Jul; 285(29):22036-49. PubMed ID: 20466732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators.
    Swärd K; Krawczyk KK; Morén B; Zhu B; Matic L; Holmberg J; Hedin U; Uvelius B; Stenkula K; Rippe C
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1128-C1142. PubMed ID: 31461342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development.
    Creemers EE; Sutherland LB; McAnally J; Richardson JA; Olson EN
    Development; 2006 Nov; 133(21):4245-56. PubMed ID: 17021041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program.
    Long X; Cowan SL; Miano JM
    Arterioscler Thromb Vasc Biol; 2013 Feb; 33(2):378-86. PubMed ID: 23175675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization.
    Muehlich S; Wang R; Lee SM; Lewis TC; Dai C; Prywes R
    Mol Cell Biol; 2008 Oct; 28(20):6302-13. PubMed ID: 18694962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism.
    Swärd K; Stenkula KG; Rippe C; Alajbegovic A; Gomez MF; Albinsson S
    J Physiol; 2016 Sep; 594(17):4741-52. PubMed ID: 27060572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation.
    Du KL; Ip HS; Li J; Chen M; Dandre F; Yu W; Lu MM; Owens GK; Parmacek MS
    Mol Cell Biol; 2003 Apr; 23(7):2425-37. PubMed ID: 12640126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β.
    Sandbo N; Lau A; Kach J; Ngam C; Yau D; Dulin NO
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L656-66. PubMed ID: 21856814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardin is a master regulator of smooth muscle gene expression.
    Wang Z; Wang DZ; Pipes GC; Olson EN
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7129-34. PubMed ID: 12756293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of SRF-dependent gene expression by association of SPT16 with MKL1.
    Kihara T; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):629-37. PubMed ID: 18036521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of smooth muscle development by the myocardin family of transcriptional coactivators.
    Wang DZ; Olson EN
    Curr Opin Genet Dev; 2004 Oct; 14(5):558-66. PubMed ID: 15380248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding.
    Zhou J; Blue EK; Hu G; Herring BP
    J Biol Chem; 2008 Dec; 283(51):35383-92. PubMed ID: 18945672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filamin A interacts with the coactivator MKL1 to promote the activity of the transcription factor SRF and cell migration.
    Kircher P; Hermanns C; Nossek M; Drexler MK; Grosse R; Fischer M; Sarikas A; Penkava J; Lewis T; Prywes R; Gudermann T; Muehlich S
    Sci Signal; 2015 Nov; 8(402):ra112. PubMed ID: 26554816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.