BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15352319)

  • 1. Current progress in the fatty acid metabolism in Cryptosporidium parvum.
    Zhu G
    J Eukaryot Microbiol; 2004; 51(4):381-8. PubMed ID: 15352319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and Biochemical Characterization of a Type II Thioesterase From the Zoonotic Protozoan Parasite
    Guo F; Zhang H; Eltahan R; Zhu G
    Front Cell Infect Microbiol; 2019; 9():199. PubMed ID: 31231619
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum.
    Zhu G; Marchewka MJ; Woods KM; Upton SJ; Keithly JS
    Mol Biochem Parasitol; 2000 Feb; 105(2):253-60. PubMed ID: 10693747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum.
    Zhu G; Li Y; Cai X; Millership JJ; Marchewka MJ; Keithly JS
    Mol Biochem Parasitol; 2004 Mar; 134(1):127-35. PubMed ID: 14747150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters.
    Zhu G; Shi X; Cai X
    BMC Biochem; 2010 Nov; 11():46. PubMed ID: 21092192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase.
    Zhu G; LaGier MJ; Stejskal F; Millership JJ; Cai X; Keithly JS
    Gene; 2002 Sep; 298(1):79-89. PubMed ID: 12406578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase.
    Fritzler JM; Zhu G
    Int J Parasitol; 2007 Mar; 37(3-4):307-16. PubMed ID: 17161840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms.
    Guo F; Zhang H; Payne HR; Zhu G
    J Eukaryot Microbiol; 2016; 63(2):233-46. PubMed ID: 26411755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells.
    VanDussen KL; Funkhouser-Jones LJ; Akey ME; Schaefer DA; Ackman K; Riggs MW; Stappenbeck TS; Sibley LD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium parvum long-chain fatty acid elongase.
    Fritzler JM; Millership JJ; Zhu G
    Eukaryot Cell; 2007 Nov; 6(11):2018-28. PubMed ID: 17827345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome sequence of the apicomplexan, Cryptosporidium parvum.
    Abrahamsen MS; Templeton TJ; Enomoto S; Abrahante JE; Zhu G; Lancto CA; Deng M; Liu C; Widmer G; Tzipori S; Buck GA; Xu P; Bankier AT; Dear PH; Konfortov BA; Spriggs HF; Iyer L; Anantharaman V; Aravind L; Kapur V
    Science; 2004 Apr; 304(5669):441-5. PubMed ID: 15044751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum.
    Cai X; Herschap D; Zhu G
    Eukaryot Cell; 2005 Jul; 4(7):1211-20. PubMed ID: 16002647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans.
    Ramakrishnan S; Serricchio M; Striepen B; Bütikofer P
    Prog Lipid Res; 2013 Oct; 52(4):488-512. PubMed ID: 23827884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases.
    Guo F; Zhang H; Fritzler JM; Rider SD; Xiang L; McNair NN; Mead JR; Zhu G
    J Infect Dis; 2014 Apr; 209(8):1279-87. PubMed ID: 24273180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of adaptive inhibitors of Cryptosporidium parvum fatty acyl-coenzyme A synthetase isoforms by virtual screening.
    Chattopadhyay S; Mahapatra RK
    Parasitol Res; 2019 Nov; 118(11):3159-3171. PubMed ID: 31486948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protozoan parasite Cryptosporidium parvum possesses two functionally and evolutionarily divergent replication protein A large subunits.
    Rider SD; Cai X; Sullivan WJ; Smith AT; Radke J; White M; Zhu G
    J Biol Chem; 2005 Sep; 280(36):31460-9. PubMed ID: 16014411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid biosynthesis as a drug target in apicomplexan parasites.
    Goodman CD; McFadden GI
    Curr Drug Targets; 2007 Jan; 8(1):15-30. PubMed ID: 17266528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target.
    Roberts CW; Roberts F; Henriquez FL; Akiyoshi D; Samuel BU; Richards TA; Milhous W; Kyle D; McIntosh L; Hill GC; Chaudhuri M; Tzipori S; McLeod R
    Int J Parasitol; 2004 Mar; 34(3):297-308. PubMed ID: 15003491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of a fatty acyl-CoA-binding protein (ACBP) from the apicomplexan Cryptosporidium parvum.
    Zeng B; Cai X; Zhu G
    Microbiology (Reading); 2006 Aug; 152(Pt 8):2355-2363. PubMed ID: 16849800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan
    Wang D; Jiang P; Wu X; Zhang Y; Wang C; Li M; Liu M; Yin J; Zhu G
    mBio; 2024 Feb; 15(2):e0315823. PubMed ID: 38265238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.