These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15352353)

  • 1. Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine.
    Guo R; Hong FL; Onae A; Bi ZY; Matsumoto H; Nakagawa K
    Opt Lett; 2004 Aug; 29(15):1733-5. PubMed ID: 15352353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine.
    Arie A; Schiller S; Gustafson EK; Byer RL
    Opt Lett; 1992 Sep; 17(17):1204-6. PubMed ID: 19798134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser.
    Arie A; Bortz ML; Fejer MM; Byer RL
    Opt Lett; 1993 Oct; 18(20):1757-9. PubMed ID: 19823508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine.
    Arie A; Byer RL
    Appl Opt; 1993 Dec; 32(36):7382-6. PubMed ID: 20861952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm.
    Galzerano G; Svelto C; Bava E; Bertinetto F
    Appl Opt; 1999 Nov; 38(33):6962-6. PubMed ID: 18324239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm.
    Hong FL; Inaba H; Hosaka K; Yasuda M; Onae A
    Opt Express; 2009 Feb; 17(3):1652-9. PubMed ID: 19188995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact iodine-stabilized laser operating at 531 nm with stability at the 10(-12) level and using a coin-sized laser module.
    Kobayashi T; Akamatsu D; Hosaka K; Inaba H; Okubo S; Tanabe T; Yasuda M; Onae A; Hong FL
    Opt Express; 2015 Aug; 23(16):20749-59. PubMed ID: 26367927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of seeded Nd:YAG lasers for high-resolution spectroscopy.
    Harrison JA; Zahedi M; Nibler JW
    Opt Lett; 1993 Jan; 18(2):149-51. PubMed ID: 19802067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diode laser-pumped, frequency-doubled neodymium: YAG laser peripheral iridotomy.
    Abreu MM; Sierra RA; Netland PA
    Ophthalmic Surg Lasers; 1997 Apr; 28(4):305-10. PubMed ID: 9101569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh long-term dimensional stability of a sapphire cryogenic optical resonator.
    Storz R; Braxmaier C; Jäck K; Pradl O; Schiller S
    Opt Lett; 1998 Jul; 23(13):1031-3. PubMed ID: 18087419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.
    de Vine G; McClelland DE; Gray MB; Close JD
    Opt Lett; 2005 May; 30(10):1219-21. PubMed ID: 15943315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hermetic optical-fiber iodine frequency standard.
    Light PS; Anstie JD; Benabid F; Luiten AN
    Opt Lett; 2015 Jun; 40(12):2703-6. PubMed ID: 26076241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.
    Al-Dhalimi MA; Al-Janabi MH
    Lasers Surg Med; 2016 Nov; 48(9):852-858. PubMed ID: 27669109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications.
    Qi Y; Zhu X; Lou Q; Ji J; Dong J; Wei Y
    Opt Express; 2005 Oct; 13(22):8725-9. PubMed ID: 19498905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable pulse frequency-doubled Nd:YAG laser versus flashlamp-pumped pulsed dye laser in the treatment of port wine stains.
    Lorenz S; Scherer K; Wimmershoff MB; Landthaler M; Hohenleutner U
    Acta Derm Venereol; 2003; 83(3):210-3. PubMed ID: 12816158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of the 300 microsecond 1064 nm Nd:YAG laser in the treatment of keloids.
    Rossi A; Lu R; Frey MK; Kubota T; Smith LA; Perez M
    J Drugs Dermatol; 2013 Nov; 12(11):1256-62. PubMed ID: 24196333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injection locking of a diode-pumped Nd:YAG laser at 946 nm.
    Hollemann G; Peik E; Rusch A; Walther H
    Opt Lett; 1995 Sep; 20(18):1871-3. PubMed ID: 19862186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency stabilization of an external cavity diode laser to molecular iodine at 657.483 nm.
    Fang HM; Wang SC; Shy JT
    Appl Opt; 2006 May; 45(13):3173-6. PubMed ID: 16639468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute frequency measurement of molecular iodine hyperfine transitions at 647  nm.
    Huang YC; Guan YC; Suen TH; Shy JT; Wang LB
    Appl Opt; 2018 Mar; 57(9):2102-2106. PubMed ID: 29603999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.