These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15352364)

  • 1. Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure.
    Ma G; Tang SH; Shen J; Zhang Z; Hua Z
    Opt Lett; 2004 Aug; 29(15):1769-71. PubMed ID: 15352364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast all-optical switching in one-dimensional photonic crystal with two defects.
    Ma G; Shen J; Zhang Z; Hua Z; Tang SH
    Opt Express; 2006 Jan; 14(2):858-65. PubMed ID: 19503405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer.
    Wang HT; Lin JD; Lee CR; Lee W
    Opt Lett; 2014 Jun; 39(12):3516-9. PubMed ID: 24978525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal.
    Wang HT; Timofeev IV; Chang K; Zyryanov VY; Lee W
    Opt Express; 2014 Jun; 22(12):15097-103. PubMed ID: 24977602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and emission of photons by a single defect in a photonic bandgap structure.
    Noda S; Chutinan A; Imada M
    Nature; 2000 Oct; 407(6804):608-10. PubMed ID: 11034204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer.
    Wu PC; Yeh ER; Zyryanov VY; Lee W
    Opt Express; 2014 Aug; 22(17):20278-83. PubMed ID: 25321237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer.
    Arkhipkin VG; Gunyakov VA; Myslivets SA; Zyryanov VY; Shabanov VF
    Eur Phys J E Soft Matter; 2007 Nov; 24(3):297-302. PubMed ID: 18060593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer.
    Saleki Z; Entezar SR; Madani A
    Appl Opt; 2017 Jan; 56(2):317-323. PubMed ID: 28085869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.
    Euser TG; Harding PJ; Vos WL
    Rev Sci Instrum; 2009 Jul; 80(7):073104. PubMed ID: 19655940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-optical tunable photonic bandgap microcavities with a femtosecond time response.
    Hu X; Jiang P; Yang H; Gong Q
    Opt Lett; 2006 Sep; 31(18):2777-9. PubMed ID: 16936889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral photonic crystals with an anisotropic defect layer.
    Gevorgyan AH; Harutyunyan MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031701. PubMed ID: 17930257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bistable absorption in a 1D photonic crystal with a nanocomposite defect layer.
    Roshan Entezar S
    Appl Opt; 2021 Sep; 60(27):8445-8452. PubMed ID: 34612944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faraday rotation in a two-dimensional photonic crystal with a magneto-optic defect.
    Jalali AA; Friberg AT
    Opt Lett; 2005 May; 30(10):1213-5. PubMed ID: 15943313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized modes in one-dimensional nonlinear periodic photonic structures.
    Apalkov VM
    J Phys Condens Matter; 2008 Jul; 20(27):275221. PubMed ID: 21694382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.
    Huang KC; Hsiao YC; Timofeev IV; Zyryanov VY; Lee W
    Opt Express; 2016 Oct; 24(22):25019-25025. PubMed ID: 27828442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a three-dimensional photonic crystal on the plasmonic properties of gold nanorods.
    Lv G; Li J; Tie SL; Lan S
    Opt Express; 2016 Jun; 24(13):14124-37. PubMed ID: 27410571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond pump-probe measurement of bandgap changes in SiO2/TiO2 one-dimensional photonic bandgap structures.
    Hwang J; Kim MJ; Wu JW; Lee SM; Rhee BK
    Opt Lett; 2006 Feb; 31(3):377-9. PubMed ID: 16480214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of one-dimensional plasma photonic crystals with inhomogeneous plasma density distribution functions.
    Jamshidi-Ghaleh K; Karami-Garehgeshlagi F; Bayat F
    Appl Opt; 2021 Dec; 60(36):11211-11216. PubMed ID: 35201110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers.
    Zhi W; Guobin R; Shuqin L; Shuisheng J
    Opt Express; 2003 Aug; 11(17):1966-79. PubMed ID: 19466082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.