These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15352444)

  • 1. Sorption of diverse organic vapors to snow.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2004 Aug; 38(15):4078-84. PubMed ID: 15352444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical interactions with snow: understanding the behavior and fate of semi-volatile organic compounds in snow.
    Herbert BM; Villa S; Halsall CJ
    Ecotoxicol Environ Saf; 2006 Jan; 63(1):3-16. PubMed ID: 16038975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of a diverse set of organic vapors to urban aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6638-43. PubMed ID: 16190222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the influence of snow on the fate of organic compounds.
    Daly GL; Wania F
    Environ Sci Technol; 2004 Aug; 38(15):4176-86. PubMed ID: 15352458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds.
    Stocker J; Scheringer M; Wegmann F; Hungerbuhler K
    Environ Sci Technol; 2007 Sep; 41(17):6192-8. PubMed ID: 17937301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in surface area and concentrations of semivolatile organic contaminants in aging snow.
    Burniston DA; Strachan WJ; Hoff JT; Wania F
    Environ Sci Technol; 2007 Jul; 41(14):4932-7. PubMed ID: 17711205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of phenanthrene on natural snow.
    Domine F; Cincinelli A; Bonnaud E; Martellini T; Picaud S
    Environ Sci Technol; 2007 Sep; 41(17):6033-8. PubMed ID: 17937278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of a diverse set of organic vapors to diesel soot and road tunnel aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6632-7. PubMed ID: 16190221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals.
    Niederer C; Schwarzenbach RP; Goss KU
    Environ Sci Technol; 2007 Oct; 41(19):6711-7. PubMed ID: 17969685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption or adsorption? Insights from molecular probes n-alkanes and cycloalkanes into modes of sorption by environmental solid matrices.
    Endo S; Grathwohl P; Schmidt TC
    Environ Sci Technol; 2008 Jun; 42(11):3989-95. PubMed ID: 18589956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach.
    Tian S; Zhu L; Shi Y
    Environ Sci Technol; 2004 Jan; 38(2):489-95. PubMed ID: 14750724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of a diverse set of organic vapors on the bulk water surface.
    Roth CM; Goss KU; Schwarzenbach RP
    J Colloid Interface Sci; 2002 Aug; 252(1):21-30. PubMed ID: 16290758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.
    Ongwandee M; Chatsuvan T; Suksawas Na Ayudhya W; Morris J
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5654-5668. PubMed ID: 28039629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the surface sorption properties of talc, different salts, and clay minerals at various relative humidities using adsorption data of a diverse set of organic vapors.
    Goss KU; Buschmann J; Schwarzenbach RP
    Environ Toxicol Chem; 2003 Nov; 22(11):2667-72. PubMed ID: 14587906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating activated carbon-water sorption coefficients of organic compounds using a linear solvation energy relationship approach and sorbate chemical activities.
    Shih YH; Gschwend PM
    Environ Sci Technol; 2009 Feb; 43(3):851-7. PubMed ID: 19245026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.
    Zhu D; Pignatello JJ
    Environ Sci Technol; 2005 Nov; 39(22):8817-28. PubMed ID: 16323782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of sorption mechanisms of solid-phase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach.
    Prikryl P; Sevcik JG
    J Chromatogr A; 2008 Jan; 1179(1):24-32. PubMed ID: 17964581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.
    Bower JP; Anastasio C
    Environ Sci Process Impacts; 2014 Apr; 16(4):748-56. PubMed ID: 24487942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of organic vapors to air-dry soils: model predictions and experimental validation.
    Goss KU; Buschmann J; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(13):3667-73. PubMed ID: 15296319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental simulation of the fate of semifluorinated n-alkanes during snowmelt.
    Plassmann MM; Meyer T; Lei YD; Wania F; McLachlan MS; Berger U
    Environ Sci Technol; 2010 Sep; 44(17):6692-7. PubMed ID: 20704285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.