These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15352462)

  • 1. Tire-wear particles as a source of zinc to the environment.
    Councell TB; Duckenfield KU; Landa ER; Callender E
    Environ Sci Technol; 2004 Aug; 38(15):4206-14. PubMed ID: 15352462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc isotopic signatures in eight lake sediment cores from across the United States.
    Thapalia A; Borrok DM; Van Metre PC; Wilson J
    Environ Sci Technol; 2015 Jan; 49(1):132-40. PubMed ID: 25490066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tire and road wear particles in road environment - Quantification and assessment of particle dynamics by Zn determination after density separation.
    Klöckner P; Reemtsma T; Eisentraut P; Braun U; Ruhl AS; Wagner S
    Chemosphere; 2019 May; 222():714-721. PubMed ID: 30738314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of heavy metal particles embedded in tire dust.
    Adachi K; Tainosho Y
    Environ Int; 2004 Oct; 30(8):1009-17. PubMed ID: 15337346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake.
    Thapalia A; Borrok DM; Van Metre PC; Musgrove M; Landa ER
    Environ Sci Technol; 2010 Mar; 44(5):1544-50. PubMed ID: 20143818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot analysis of tire tread characteristics and associated tire-wear particles in vehicles produced across distinct time periods.
    Zhang M; Li J; Yin H; Wang X; Qin Y; Yang Z; Wen Y; Luo J; Yin D; Ge Y; Wang C; Sun X; Xu L
    Sci Total Environ; 2024 Jul; 932():172760. PubMed ID: 38670369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies.
    Kreider ML; Panko JM; McAtee BL; Sweet LI; Finley BL
    Sci Total Environ; 2010 Jan; 408(3):652-9. PubMed ID: 19896165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis.
    Unice KM; Kreider ML; Panko JM
    Environ Sci Technol; 2013 Aug; 47(15):8138-47. PubMed ID: 23841521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-element analysis of tyre rubber for metal tracers.
    O'Loughlin DP; Haugen MJ; Day J; Brown AS; Braysher EC; Molden N; Willis AE; MacFarlane M; Boies AM
    Environ Int; 2023 Aug; 178():108047. PubMed ID: 37419058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and effect of zinc from tire debris in soil.
    Smolders E; Degryse F
    Environ Sci Technol; 2002 Sep; 36(17):3706-10. PubMed ID: 12322741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions.
    Woo SH; Jang H; Mun SH; Lim Y; Lee S
    Sci Total Environ; 2022 Sep; 838(Pt 4):156548. PubMed ID: 35688251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemical fractionation and potential source identification of Cu, Zn and Cd on urban watershed.
    Zhang J; Hua P; Krebs P
    Water Sci Technol; 2015; 72(8):1428-36. PubMed ID: 26465315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada.
    Outridge PM; Rausch N; Percival JB; Shotyk W; McNeely R
    Sci Total Environ; 2011 Jan; 409(3):548-63. PubMed ID: 21094516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and Quantification of Tire Particles in Sediments Using a Combination of Simultaneous Thermal Analysis, Fourier Transform Infra-Red, and Parallel Factor Analysis.
    Mengistu D; Nilsen V; Heistad A; Kvaal K
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31533223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of tire debris leachates.
    Gualtieri M; Andrioletti M; Vismara C; Milani M; Camatini M
    Environ Int; 2005 Jul; 31(5):723-30. PubMed ID: 15910969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Tire Wear Particulate Matter through Tire Tread Prescription.
    Ha JU; Bae SH; Choi YJ; Lee PC; Jeoung SK; Song S; Choi C; Lee JS; Kim J; Han IS
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching of zinc from tire wear particles under simulated estuarine conditions.
    Degaffe FS; Turner A
    Chemosphere; 2011 Oct; 85(5):738-43. PubMed ID: 21737116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tire tread wear particles in ambient air--a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole.
    Avagyan R; Sadiktsis I; Bergvall C; Westerholm R
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11580-6. PubMed ID: 25028318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions.
    Bae SH; Chae E; Park YS; Lee SW; Yun JH; Choi SS
    Sci Total Environ; 2024 Sep; 944():173948. PubMed ID: 38880134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated tire wear buildup and rainfall-runoff model to simulate tire wear particles in stormwater.
    Dupasquier M; Hernandez J; Gonzalez A; Aguirre C; McDonald W
    J Environ Manage; 2023 Nov; 346():118958. PubMed ID: 37716167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.