These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15352477)

  • 1. Use of cyclodextrin and calcium chloride for enhanced removal of mercury from soil.
    Wang X; Yolcubal I; Wang W; Artiola J; Maier R; Brusseau M
    Environ Toxicol Chem; 2004 Aug; 23(8):1888-92. PubMed ID: 15352477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of lead removal from contaminated soils by nontoxic soil-washing agents.
    Neilson JW; Artiola JF; Maier RM
    J Environ Qual; 2003; 32(3):899-908. PubMed ID: 12809290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of copper shavings to remove mercury from contaminated groundwater or wastewater by amalgamation.
    Huttenloch P; Roehl KE; Czurda K
    Environ Sci Technol; 2003 Sep; 37(18):4269-73. PubMed ID: 14524463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study.
    Viglianti C; Hanna K; de Brauer C; Germain P
    Environ Pollut; 2006 Apr; 140(3):427-35. PubMed ID: 16188357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of mercury from clayey soils using electrokinetics.
    Reddy KR; Chaparro C; Saichek RE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Feb; 38(2):307-38. PubMed ID: 12638698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils.
    Jiradecha C; Urgun-Demirtas M; Pagilla K
    J Hazard Mater; 2006 Aug; 136(1):61-7. PubMed ID: 16359784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil.
    Xu J; Kleja DB; Biester H; Lagerkvist A; Kumpiene J
    Chemosphere; 2014 Aug; 109():99-105. PubMed ID: 24873713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metal-soil contact time on the extraction of mercury from soils.
    Ma L; Zhong H; Wu YG
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):399-406. PubMed ID: 25613855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of hexachlorobenzene in soil by enhanced electrokinetic Fenton process.
    Oonnittan A; Shrestha RA; Sillanpaa M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):894-900. PubMed ID: 18569300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of rice residue incorporation on the speciation, potential bioavailability and risk of mercury in a contaminated paddy soil.
    Zhu H; Zhong H; Evans D; Hintelmann H
    J Hazard Mater; 2015 Aug; 293():64-71. PubMed ID: 25827269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of randomly methylated beta-cyclodextrin on physical properties of soils.
    Jozefaciuk G; Muranyi A; Fenyvesi E
    Environ Sci Technol; 2003 Jul; 37(13):3012-7. PubMed ID: 12875408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.
    Wang J; Xia J; Feng X
    J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a two-stage biotransformation system for mercury-contaminated soil remediation.
    Chen SC; Lin WH; Chien CC; Tsang DCW; Kao CM
    Chemosphere; 2018 Jun; 200():266-273. PubMed ID: 29494907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation.
    Hanna K; Chiron S; Oturan MA
    Water Res; 2005 Jul; 39(12):2763-73. PubMed ID: 15975622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of activated carbon to recover randomly-methylated-β-cyclodextrin solution from washing water originating from in situ soil flushing.
    Sniegowski K; Vanhecke M; D'Huys PJ; Braeken L
    Sci Total Environ; 2014 Jul; 485-486():764-768. PubMed ID: 24325845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inclusion complexes of alpha- and gamma-cyclodextrins and the herbicide norflurazon: I. Preparation and characterisation. II. Enhanced solubilisation and removal from soils.
    Villaverde J; Pérez-Martínez JI; Maqueda C; Ginés JM; Morillo E
    Chemosphere; 2005 Jul; 60(5):656-64. PubMed ID: 15963804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption characteristics of elemental mercury in mercury chloride solutions.
    Ma Y; Xu H; Qu Z; Yan N; Wang W
    J Environ Sci (China); 2014 Nov; 26(11):2257-65. PubMed ID: 25458680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.