These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 15352800)
1. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations. Guo Y; Kawano A; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2004 Sep; 121(11):5091-7. PubMed ID: 15352800 [TBL] [Abstract][Full Text] [Related]
2. Interpolating moving least-squares methods for fitting potential energy surfaces: Improving efficiency via local approximants. Guo Y; Tokmakov I; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2007 Dec; 127(21):214106. PubMed ID: 18067348 [TBL] [Abstract][Full Text] [Related]
3. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction. Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059 [TBL] [Abstract][Full Text] [Related]
4. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793 [TBL] [Abstract][Full Text] [Related]
5. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space. Dawes R; Passalacqua A; Wagner AF; Sewell TD; Minkoff M; Thompson DL J Chem Phys; 2009 Apr; 130(14):144107. PubMed ID: 19368429 [TBL] [Abstract][Full Text] [Related]
6. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies. Kawano A; Tokmakov IV; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2006 Feb; 124(5):054105. PubMed ID: 16468849 [TBL] [Abstract][Full Text] [Related]
7. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. Dawes R; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033 [TBL] [Abstract][Full Text] [Related]
8. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system. Maisuradze GG; Kawano A; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2004 Dec; 121(21):10329-38. PubMed ID: 15549910 [TBL] [Abstract][Full Text] [Related]
10. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N4. Bender JD; Doraiswamy S; Truhlar DG; Candler GV J Chem Phys; 2014 Feb; 140(5):054302. PubMed ID: 24511935 [TBL] [Abstract][Full Text] [Related]
11. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces. Dawes R; Wagner AF; Thompson DL J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124 [TBL] [Abstract][Full Text] [Related]
12. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting. Le HM; Huynh S; Raff LM J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096 [TBL] [Abstract][Full Text] [Related]
13. A semiclassical study of cis-trans isomerization in HONO using an interpolating moving least-squares potential. Pham P; Guo Y J Chem Phys; 2013 Apr; 138(14):144304. PubMed ID: 24981532 [TBL] [Abstract][Full Text] [Related]
14. Improving the accuracy of interpolated potential energy surfaces by using an analytical zeroth-order potential function. Kawano A; Guo Y; Thompson DL; Wagner AF; Minkoff M J Chem Phys; 2004 Apr; 120(14):6414-22. PubMed ID: 15267530 [TBL] [Abstract][Full Text] [Related]
16. A classical trajectory study of the intramolecular dynamics, isomerization, and unimolecular dissociation of HO2. Perry JW; Dawes R; Wagner AF; Thompson DL J Chem Phys; 2013 Aug; 139(8):084319. PubMed ID: 24007009 [TBL] [Abstract][Full Text] [Related]
17. Ab initio and direct quasiclassical-trajectory study of the Cl + CH4-->HCl + CH3 reaction. Troya D; Weiss PJ J Chem Phys; 2006 Feb; 124(7):74313. PubMed ID: 16497042 [TBL] [Abstract][Full Text] [Related]
18. A nested molecule-independent neural network approach for high-quality potential fits. Manzhos S; Wang X; Dawes R; Carrington T J Phys Chem A; 2006 Apr; 110(16):5295-304. PubMed ID: 16623455 [TBL] [Abstract][Full Text] [Related]
19. Global analytical potential energy surfaces for HO2(X2A") based on high-level ab initio calculations. Xie D; Xu C; Ho TS; Rabitz H; Lendvay G; Lin SY; Guo H J Chem Phys; 2007 Feb; 126(7):074315. PubMed ID: 17328613 [TBL] [Abstract][Full Text] [Related]