These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15352835)

  • 1. Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2004 Sep; 121(11):5410-22. PubMed ID: 15352835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Phys Chem B; 2005 Jun; 109(23):11683-92. PubMed ID: 16852434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys.
    Duan Z; Wang G
    J Phys Condens Matter; 2011 Nov; 23(47):475301. PubMed ID: 22075765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.
    Hwang BJ; Chen CH; Sarma LS; Chen JM; Wang GR; Tang MT; Liu DG; Lee JF
    J Phys Chem B; 2006 Apr; 110(13):6475-82. PubMed ID: 16570944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segregation of Pt(28)Rh(27) bimetallic nanoparticles: a first-principles study.
    Yuge K
    J Phys Condens Matter; 2010 Jun; 22(24):245401. PubMed ID: 21393781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal.
    Duan Z; Zhong J; Wang G
    J Chem Phys; 2010 Sep; 133(11):114701. PubMed ID: 20866148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.
    Huang J; Liu Z; He C; Gan LM
    J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorbate-induced surface segregation for core-shell nanocatalysts.
    Mayrhofer KJ; Juhart V; Hartl K; Hanzlik M; Arenz M
    Angew Chem Int Ed Engl; 2009; 48(19):3529-31. PubMed ID: 19350604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys.
    Chen W; Dalach P; Schneider WF; Wolverton C
    Langmuir; 2012 Mar; 28(10):4683-93. PubMed ID: 22352380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles.
    Beale AM; Weckhuysen BM
    Phys Chem Chem Phys; 2010 Jun; 12(21):5562-74. PubMed ID: 20379576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural investigation of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles using first-principles calculations.
    Hung SH; Akiba H; Yamamuro O; Ozaki T
    RSC Adv; 2020 Apr; 10(28):16527-16536. PubMed ID: 35498819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage mediated by Pd and Pt nanoparticles.
    Yamauchi M; Kobayashi H; Kitagawa H
    Chemphyschem; 2009 Oct; 10(15):2566-76. PubMed ID: 19823997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.