These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15353325)

  • 1. Sensing and adapting to environmental stress: the archaeal tactic.
    Pedone E; Bartolucci S; Fiorentino G
    Front Biosci; 2004 Sep; 9():2909-26. PubMed ID: 15353325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing and adapting to acid stress.
    Boot IR; Cash P; O'Byrne C
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):33-42. PubMed ID: 12448703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant and antioxidant balance in the airways and airway diseases.
    Rahman I; Biswas SK; Kode A
    Eur J Pharmacol; 2006 Mar; 533(1-3):222-39. PubMed ID: 16500642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis.
    Diaz PI; Zilm PS; Wasinger V; Corthals GL; Rogers AH
    Oral Microbiol Immunol; 2004 Jun; 19(3):137-43. PubMed ID: 15107063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and biochemical responses of probiotic bacteria to oxygen.
    Talwalkar A; Kailasapathy K
    J Dairy Sci; 2003 Aug; 86(8):2537-46. PubMed ID: 12939077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An archaeal NADH oxidase causes damage to both proteins and nucleic acids under oxidative stress.
    Jia B; Lee S; Pham BP; Cho YS; Yang JK; Byeon HS; Kim JC; Cheong GW
    Mol Cells; 2010 Apr; 29(4):363-71. PubMed ID: 20213313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides.
    Garrido EO; Grant CM
    Mol Microbiol; 2002 Feb; 43(4):993-1003. PubMed ID: 11929546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of frontline defense mechanisms under severe oxidative stress.
    Kaur A; Van PT; Busch CR; Robinson CK; Pan M; Pang WL; Reiss DJ; DiRuggiero J; Baliga NS
    Mol Syst Biol; 2010 Jul; 6():393. PubMed ID: 20664639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species.
    Shimamura S; Abe F; Ishibashi N; Miyakawa H; Yaeshima T; Araya T; Tomita M
    J Dairy Sci; 1992 Dec; 75(12):3296-306. PubMed ID: 1474198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in Lactococcus lactis.
    Miyoshi A; Rochat T; Gratadoux JJ; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Dec; 2(4):348-59. PubMed ID: 15011138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of cellular functions.
    Oktyabrsky ON; Smirnova GV
    Biochemistry (Mosc); 2007 Feb; 72(2):132-45. PubMed ID: 17367290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress.
    Ward DE; Donnelly CJ; Mullendore ME; van der Oost J; de Vos WM; Crane EJ
    Eur J Biochem; 2001 Nov; 268(22):5816-23. PubMed ID: 11722568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4.
    Limauro D; Pedone E; Galdi I; Bartolucci S
    FEBS J; 2008 May; 275(9):2067-77. PubMed ID: 18355320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
    Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y
    J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant defence systems in the protozoan pathogen Giardia intestinalis.
    Mastronicola D; Falabella M; Forte E; Testa F; Sarti P; Giuffrè A
    Mol Biochem Parasitol; 2016; 206(1-2):56-66. PubMed ID: 26672398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum.
    Müller S
    Mol Microbiol; 2004 Sep; 53(5):1291-305. PubMed ID: 15387810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NADH oxidase from the thermoacidophilic archaea Acidianus ambivalens: isolation and physicochemical characterisation.
    Gomes CM; Teixeira M
    Biochem Biophys Res Commun; 1998 Feb; 243(2):412-5. PubMed ID: 9480823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut.
    Yan M; Yin W; Fang X; Guo J; Shi H
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27737924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress.
    Cannio R; Fiorentino G; Morana A; Rossi M; Bartolucci S
    Front Biosci; 2000 Sep; 5():D768-79. PubMed ID: 10966869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responding to toxic compounds: a genomic and functional overview of Archaea.
    Bartolucci S; Contursi P; Fiorentino G; Limauro D; Pedone E
    Front Biosci (Landmark Ed); 2013 Jan; 18(1):165-89. PubMed ID: 23276916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.