These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15353477)

  • 21. Erythrocyte aging in sickle cell disease.
    Bosman GJ
    Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):81-6. PubMed ID: 15040431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of intracellular magnesium and oxygen tension on K+-Cl- cotransport in normal and sickle human red cells.
    Muzyamba MC; Campbell EH; Gibson JS
    Cell Physiol Biochem; 2006; 17(3-4):121-8. PubMed ID: 16543728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Na+-K+-2Cl- cotransport by protein phosphorylation in ferret erythrocytes.
    Flatman PW; Creanor J
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):699-708. PubMed ID: 10358111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Na(+)-independent Mg2+ efflux from erythrocytes.
    Günther T; Vormann J
    FEBS Lett; 1990 Oct; 271(1-2):149-51. PubMed ID: 2171998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic strategies for prevention of sickle cell dehydration.
    Brugnara C
    Blood Cells Mol Dis; 2001; 27(1):71-80. PubMed ID: 11358364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1985 Jul; 130(2):540-5. PubMed ID: 2992474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes.
    Almulla HA; Bush PG; Steele MG; Flatman PW; Ellis D
    Pflugers Arch; 2006 Feb; 451(5):657-67. PubMed ID: 16133259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease.
    De Franceschi L; Bachir D; Galacteros F; Tchernia G; Cynober T; Alper S; Platt O; Beuzard Y; Brugnara C
    J Clin Invest; 1997 Oct; 100(7):1847-52. PubMed ID: 9312186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Passive sodium and potassium movements in sickle erythrocytes.
    Berkowitz LR; Orringer EP
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C208-14. PubMed ID: 4037070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. (Ca2++Mg2+)-ATPase activity of sickle cell membranes: decreased activation by red blood cell cytoplasmic activator.
    Gopinath RM; Vincenzi FF
    Am J Hematol; 1979; 7(4):303-12. PubMed ID: 161856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells.
    Schweigel M; Kolisek M; Nikolic Z; Kuzinski J
    Magnes Res; 2008 Jun; 21(2):118-23. PubMed ID: 18705540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of deoxygenation-induced increase in tyrosine kinase activity in sickle cell dehydration.
    Merciris P; Hardy-Dessources MD; Sauvage M; Giraud F
    Pflugers Arch; 1998 Aug; 436(3):315-22. PubMed ID: 9644211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased Na+/Mg2+ antiport in erythrocytes of patients with cystic fibrosis.
    Vormann J; Magdorf K; Günther T; Wahn U
    Eur J Clin Chem Clin Biochem; 1994 Nov; 32(11):833-6. PubMed ID: 7888479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase C, Rac GTPases, and reactive oxygen species.
    George A; Pushkaran S; Li L; An X; Zheng Y; Mohandas N; Joiner CH; Kalfa TA
    Blood Cells Mol Dis; 2010 Jun; 45(1):41-5. PubMed ID: 20231105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Erythrocyte Na(+)-H+ exchanger and Na(+)-Li+ countertransport activity in primary aldosteronism.
    Delva P; Pastori C; Degan M; Montesi G; Bassi A; Lechi A
    Eur J Clin Invest; 1994 Dec; 24(12):794-8. PubMed ID: 7705372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmalemmal transport of magnesium in excitable cells.
    Rasgado-Flores H; Gonzalez-Serratos H
    Front Biosci; 2000 Sep; 5():D866-79. PubMed ID: 10966876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes.
    Nur E; Verwijs M; de Waart DR; Schnog JJ; Otten HM; Brandjes DP; Biemond BJ; Elferink RP;
    Biochim Biophys Acta; 2011 Nov; 1812(11):1412-7. PubMed ID: 21558001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythrocyte Na(+)-H+ exchanger kinetics and Na(+)-Li+ countertransport activity in essential hypertensive patients.
    Delva P; Pastori C; Degan M; Montesi G; Lechi C; Steele A; Lechi A
    Eur J Clin Invest; 1996 Jan; 26(1):64-70. PubMed ID: 8682158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Na+/H+ exchange is increased in sickle cell anemia and young normal red cells.
    Canessa M; Fabry ME; Suzuka SM; Morgan K; Nagel RL
    J Membr Biol; 1990 Jun; 116(2):107-15. PubMed ID: 2166162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane transport of Na and K and cell dehydration in sickle erythrocytes.
    Brugnara C
    Experientia; 1993 Feb; 49(2):100-9. PubMed ID: 8440348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.