These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15353477)

  • 41. An Na+-stimulated Mg2+-transport system in human red blood cells.
    Féray JC; Garay R
    Biochim Biophys Acta; 1986 Mar; 856(1):76-84. PubMed ID: 3955035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholesterol modulation of transmembrane cation transport systems in human erythrocytes.
    Lijnen P; Petrov V
    Biochem Mol Med; 1995 Oct; 56(1):52-62. PubMed ID: 8593538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A.
    Ivanova TI; Agalakova NI; Gusev GP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):60-7. PubMed ID: 16875859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of erythrocyte cation and water content in sickle cell anemia.
    Brugnara C; Bunn HF; Tosteson DC
    Science; 1986 Apr; 232(4748):388-90. PubMed ID: 3961486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulation of choline/Mg2+ antiport in rat erythrocytes by mefloquine.
    Ebel H; Günther T
    Magnes Res; 2006 Mar; 19(1):7-11. PubMed ID: 16846095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Kinetic properties of sodium transport pathways in the river lamprey Lampetra fluviatilis erythrocytes].
    Ivanova TI; Sherstobitov AO; Gusev GP
    Zh Evol Biokhim Fiziol; 2007; 43(6):468-73. PubMed ID: 18265557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How do sickle cells become dehydrated?
    Merciris P; Giraud F
    Hematol J; 2001; 2(3):200-5. PubMed ID: 11920246
    [No Abstract]   [Full Text] [Related]  

  • 48. The effects of sickling on ion transport. II. The effect of sickling on sodium and cesium transport.
    TOSTESON DC
    J Gen Physiol; 1955 Sep; 39(1):55-67. PubMed ID: 13252235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of disodium cromoglycate on cationic exchange of deoxygenated sickle cells.
    Bizumukama L; Ferster A; Gulbis B; Kumps A; Cotton F
    Eur J Pharmacol; 2011 Aug; 665(1-3):13-8. PubMed ID: 21586281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of magnesium fluxes in rat erythrocytes using a stable isotope of magnesium.
    Chanson A; Feillet-Coudray C; Gueux E; Coudray C; Rambeau M; Mazur A; Wolf FI; Rayssiguier Y
    Front Biosci; 2005 May; 10():1720-6. PubMed ID: 15769661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms and regulation of Mg2+ efflux and Mg2+ influx.
    Günther T
    Miner Electrolyte Metab; 1993; 19(4-5):259-65. PubMed ID: 8264512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous determination of low free Mg2+ and pH in human sickle cells using 31P NMR spectroscopy.
    Willcocks JP; Mulquiney PJ; Ellory JC; Veech RL; Radda GK; Clarke K
    J Biol Chem; 2002 Dec; 277(51):49911-20. PubMed ID: 12297506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmembrane cationic fluxes in erythrocytes of diabetics and normal men.
    Lijnen P; Fenyvesi A
    Methods Find Exp Clin Pharmacol; 1994; 16(1):37-47. PubMed ID: 8164472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Na+/Mg2+ antiport in non-erythrocyte vertebrate cells.
    Günther T
    Magnes Res; 2007 Jun; 20(2):89-99. PubMed ID: 18062583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracellular Mg(2+)-dependent Na+, K+, and Cl- efflux in squid giant axons.
    Rasgado-Flores H; Gonzalez-Serratos H; DeSantiago J
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C1112-7. PubMed ID: 8178958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential oxygen sensitivity of the K+-Cl- cotransporter in normal and sickle human red blood cells.
    Gibson JS; Speake PF; Ellory JC
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):225-34. PubMed ID: 9679176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia.
    Bookchin RM; Ortiz OE; Lew VL
    J Clin Invest; 1991 Jan; 87(1):113-24. PubMed ID: 1702096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sickling times of individual erythrocytes at zero Po2.
    Zarkowsky HS; Hochmuth RM
    J Clin Invest; 1975 Oct; 56(4):1023-34. PubMed ID: 239967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.