These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 15353893)
1. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. Gleason RL; Humphrey JD J Vasc Res; 2004; 41(4):352-63. PubMed ID: 15353893 [TBL] [Abstract][Full Text] [Related]
2. A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Humphrey JD; Rajagopal KR Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812 [TBL] [Abstract][Full Text] [Related]
3. Effects of a sustained extension on arterial growth and remodeling: a theoretical study. Gleason RL; Humphrey JD J Biomech; 2005 Jun; 38(6):1255-61. PubMed ID: 15863110 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Fridez P; Makino A; Kakoi D; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N Ann Biomed Eng; 2002; 30(7):905-16. PubMed ID: 12398421 [TBL] [Abstract][Full Text] [Related]
5. A structure-based model of arterial remodeling in response to sustained hypertension. Tsamis A; Stergiopulos N; Rachev A J Biomech Eng; 2009 Oct; 131(10):101004. PubMed ID: 19831474 [TBL] [Abstract][Full Text] [Related]
6. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Cardamone L; ValentÃn A; Eberth JF; Humphrey JD Math Med Biol; 2010 Dec; 27(4):343-71. PubMed ID: 20484365 [TBL] [Abstract][Full Text] [Related]
7. Biomechanics of the porcine basilar artery in hypertension. Hu JJ; Fossum TW; Miller MW; Xu H; Liu JC; Humphrey JD Ann Biomed Eng; 2007 Jan; 35(1):19-29. PubMed ID: 17066325 [TBL] [Abstract][Full Text] [Related]
8. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Masson I; Beaussier H; Boutouyrie P; Laurent S; Humphrey JD; Zidi M Biomech Model Mechanobiol; 2011 Dec; 10(6):867-82. PubMed ID: 21207095 [TBL] [Abstract][Full Text] [Related]
9. A potential role of smooth muscle tone in early hypertension: a theoretical study. Humphrey JD; Wilson E J Biomech; 2003 Nov; 36(11):1595-601. PubMed ID: 14522200 [TBL] [Abstract][Full Text] [Related]
10. Short-Term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle. Fridez P; Makino A; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N Ann Biomed Eng; 2001 Jan; 29(1):26-34. PubMed ID: 11219505 [TBL] [Abstract][Full Text] [Related]
11. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Fridez P; Rachev A; Meister JJ; Hayashi K; Stergiopulos N Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2752-60. PubMed ID: 11356633 [TBL] [Abstract][Full Text] [Related]
12. A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Gleason RL; Humphrey JD Math Med Biol; 2005 Dec; 22(4):347-69. PubMed ID: 16319121 [TBL] [Abstract][Full Text] [Related]
13. Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension. Fridez P; Zulliger M; Bobard F; Montorzi G; Miyazaki H; Hayashi K; Stergiopulos N J Biomech; 2003 May; 36(5):671-80. PubMed ID: 12694997 [TBL] [Abstract][Full Text] [Related]
14. Smart smooth muscle spring-dampers. Smooth muscle smart filtering helps to more efficiently protect the arterial wall. Armentano RL; Barra JG; Pessana FM; Craiem DO; Graf S; Santana DB; Sanchez RA IEEE Eng Med Biol Mag; 2007; 26(1):62-70. PubMed ID: 17278774 [No Abstract] [Full Text] [Related]
15. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. Hayashi K; Naiki T J Mech Behav Biomed Mater; 2009 Jan; 2(1):3-19. PubMed ID: 19627803 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical adaptation of porcine carotid vascular smooth muscle to hypo and hypertension in vitro. Zulliger MA; Montorzi G; Stergiopulos N J Biomech; 2002 Jun; 35(6):757-65. PubMed ID: 12020995 [TBL] [Abstract][Full Text] [Related]
17. Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model. Price RJ; Skalak TC Microvasc Res; 1994 Mar; 47(2):188-202. PubMed ID: 8022319 [TBL] [Abstract][Full Text] [Related]
18. Role of arterial compliance in the physiopharmacological approach to human hypertension. Simon AC; Levenson J; Chau NP; Pithois-Merli I J Cardiovasc Pharmacol; 1992; 19 Suppl 5():S11-20. PubMed ID: 1381785 [TBL] [Abstract][Full Text] [Related]
19. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure. Aggoun Y; Farpour-Lambert NJ; Marchand LM; Golay E; Maggio AB; Beghetti M Eur Heart J; 2008 Mar; 29(6):792-9. PubMed ID: 18245115 [TBL] [Abstract][Full Text] [Related]
20. A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation. Jacobsen JC; Mulvany MJ; Holstein-Rathlou NH Am J Physiol Regul Integr Comp Physiol; 2008 Apr; 294(4):R1379-89. PubMed ID: 18184768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]