These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 15353909)

  • 1. Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development.
    Fritzsch B; Beisel KW
    Brain Behav Evol; 2004; 64(3):182-97. PubMed ID: 15353909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of the vertebrate mechanosensory cell and ear.
    Fritzsch B; Beisel KW; Pauley S; Soukup G
    Int J Dev Biol; 2007; 51(6-7):663-78. PubMed ID: 17891725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cells, molecules and morphogenesis: the making of the vertebrate ear.
    Fritzsch B; Pauley S; Beisel KW
    Brain Res; 2006 May; 1091(1):151-71. PubMed ID: 16643865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of sound and balance perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of corti.
    Duncan JS; Fritzsch B
    Anat Rec (Hoboken); 2012 Nov; 295(11):1760-74. PubMed ID: 23044863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies.
    Fritzsch B; Beisel KW; Bermingham NA
    Neuroreport; 2000 Nov; 11(17):R35-44. PubMed ID: 11117521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies.
    Fritzsch B; Straka H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jan; 200(1):5-18. PubMed ID: 24281353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene, cell, and organ multiplication drives inner ear evolution.
    Fritzsch B; Elliott KL
    Dev Biol; 2017 Nov; 431(1):3-15. PubMed ID: 28866362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and development of the vertebrate ear.
    Fritzsch B; Beisel KW
    Brain Res Bull; 2001 Aug; 55(6):711-21. PubMed ID: 11595355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecules of mechanosensation.
    Garcia-Anoveros J; Corey DP
    Annu Rev Neurosci; 1997; 20():567-94. PubMed ID: 9056725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oral sensory structures of Thaliacea (Tunicata) and consideration of the evolution of hair cells in Chordata.
    Caicci F; Gasparini F; Rigon F; Zaniolo G; Burighel P; Manni L
    J Comp Neurol; 2013 Aug; 521(12):2756-71. PubMed ID: 23386364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of differentiation gene batteries for migratory mechanosensory neurons across bilaterians.
    Zhao D; Chen S; Horie T; Gao Y; Bao H; Liu X
    Evol Dev; 2020 Nov; 22(6):438-450. PubMed ID: 32078235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of sensory pathways in vertebrates.
    Hodos W; Butler AB
    Brain Behav Evol; 1997; 50(4):189-97. PubMed ID: 9310194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus.
    Holland LZ; Schubert M; Holland ND; Neuman T
    Dev Biol; 2000 Oct; 226(1):18-33. PubMed ID: 10993671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution.
    Duncan JS; Fritzsch B
    Adv Exp Med Biol; 2012; 739():173-86. PubMed ID: 22399402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hair cells in an ascidian (Tunicata) and their evolution in chordates.
    Caicci F; Burighel P; Manni L
    Hear Res; 2007 Sep; 231(1-2):63-72. PubMed ID: 17611058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies.
    Holland LZ
    J Exp Zool B Mol Dev Evol; 2005 Jul; 304(4):304-23. PubMed ID: 15834938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of sensory placodes.
    Mazet F
    ScientificWorldJournal; 2006 Apr; 6():1841-50. PubMed ID: 17205191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective.
    Fritzsch B; Pan N; Jahan I; Duncan JS; Kopecky BJ; Elliott KL; Kersigo J; Yang T
    Evol Dev; 2013 Jan; 15(1):63-79. PubMed ID: 23331918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amphibian octavo-lateralis system and its regressive and progressive evolution.
    Fritzsch B
    Acta Biol Hung; 1988; 39(2-3):305-22. PubMed ID: 3077009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes.
    Mazet F; Shimeld SM
    J Exp Zool B Mol Dev Evol; 2005 Jul; 304(4):340-6. PubMed ID: 15981200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.