These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15354430)

  • 21. Chiral separations in capillary high-performance liquid chromatography and nonaqueous capillary electrochromatography using helically chiral poly(diphenyl-2-pyridylmethyl methacrylate) as chiral stationary phase.
    Krause K; Chankvetadze B; Okamoto Y; Blaschke G
    Electrophoresis; 1999 Sep; 20(13):2772-8. PubMed ID: 10532347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of mobile phase composition on electroosmotic flow velocity, solute retention and column efficiency in open-tubular reversed-phase capillary electrochromatography.
    Crego AL; Martínez J; Marina ML
    J Chromatogr A; 2000 Feb; 869(1-2):329-37. PubMed ID: 10720248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.
    Kitagawa S; Tsuda T
    J Chromatogr A; 2003 May; 995(1-2):209-15. PubMed ID: 12800937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linear voltage profiles and flow homogeneity in pressurized planar electrochromatography.
    Tate PA; Dorsey JG
    J Chromatogr A; 2006 Jan; 1103(1):150-7. PubMed ID: 16325189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ability of porous graphitic carbon to support electroosmotic flow in capillary electrochromatography.
    Al Rifafï R; Demesmay C; Rocca JL
    J Chromatogr A; 2002 Oct; 973(1-2):177-86. PubMed ID: 12437176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplay of chromatographic and electrophoretic processes in capillary electrochromatography.
    Rathore AS; McKeown AP; Euerby MR
    J Chromatogr A; 2003 Aug; 1010(1):105-11. PubMed ID: 14503820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Migration of neutral solutes by double stepwise gradient elution in capillary electrochromatography.
    Zhang W; Zhang L; Ping G; Zhang Y; Kettrup A
    J Chromatogr A; 2001 Jul; 922(1-2):277-82. PubMed ID: 11486873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modelling of adsorption and transport processes in capillary electrochromatography: open-tubular geometry.
    Paces M; Kosek J; Marek M; Tallarek U; Seidel-Morgenstern A
    Electrophoresis; 2003 Jan; 24(3):380-9. PubMed ID: 12569530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of flow and voltage profiles in planar electrochromatography.
    Tate PA; Dorsey JG
    J Chromatogr A; 2005 Jun; 1079(1-2):317-27. PubMed ID: 16038318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Transfer of solutes in capillary electrochromatography with mixed-mode stationary phase].
    Zhang WB; Zhang LH; Zhang LY; Zhang YK
    Se Pu; 2002 Jul; 20(4):295-8. PubMed ID: 12541908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of four mixtures of pesticides by pressurized planar electrochromatography (PPEC).
    Tuzimski T
    J AOAC Int; 2010; 93(6):1757-67. PubMed ID: 21313801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography.
    Preinerstorfer B; Lubda D; Lindner W; Lämmerhofer M
    J Chromatogr A; 2006 Feb; 1106(1-2):94-105. PubMed ID: 16388817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of flow rate in pressurized gradient capillary electrochromatography using splitter and separation of peptides using an Amide stationary phase.
    Nakashima R; Kitagawa S; Yoshida T; Tsuda T
    J Chromatogr A; 2004 Jul; 1044(1-2):305-9. PubMed ID: 15354452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of addition of ion-pairing acid and organic modifier of the mobile phase on retention and migration of peptides in pressurized planar electrochromatography system with octadecyl silica-based adsorbent.
    Gwarda RŁ; Dzido TH
    J Chromatogr A; 2018 Jul; 1558():77-84. PubMed ID: 29776673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Overpressured-Layer Chromatography and High-Performance/High-Pressure Layer Electrochromatography Using the New Prototype Equipment in Various Operational Modes.
    Gwarda RŁ; Dzido TH
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of a hepta-Tyr antibiotic modified silica stationary phase for the enantiomeric resolution of D,L-loxiglumide by electrochromatography and nano-liquid chromatography.
    Fanali S; D'Orazio G; Quaglia MG; Rocco A
    J Chromatogr A; 2004 Oct; 1051(1-2):247-52. PubMed ID: 15532580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.
    Chein R; Yang YC; Lin Y
    Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Migration of ions in capillary electrochromatography.
    Ståhlberg J
    J Chromatogr A; 2000 Sep; 892(1-2):291-301. PubMed ID: 11045494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary electrochromatography of peptides on a neutral porous monolith with annular electroosmotic flow generation.
    Li Y; Xiang R; Horváth C; Wilkins JA
    Electrophoresis; 2004 Feb; 25(4-5):545-53. PubMed ID: 14981680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.