BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 15355040)

  • 21. Asymmetric synthesis of 2-alkyl-substituted 2,5-dihydropyrroles from optically active aza-Baylis-Hillman adducts. Formal synthesis of (-)-trachelanthamidine.
    Ishikawa S; Noguchi F; Kamimura A
    J Org Chem; 2010 Jun; 75(11):3578-86. PubMed ID: 20465267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Olefin cross-metathesis as a tool in natural product degradation. The stereochemistry of (+)-falcarindiol.
    Ratnayake AS; Hemscheidt T
    Org Lett; 2002 Dec; 4(26):4667-9. PubMed ID: 12489956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetically controlled ring-closing metathesis: synthesis of a potential scaffold for 12-membered salicylic macrolides.
    Matsuya Y; Takayanagi S; Nemoto H
    Chemistry; 2008; 14(17):5275-81. PubMed ID: 18442032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of alpha,beta-unsaturated 4,5-disubstituted gamma-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs' catalyst.
    Bassetti M; D'Annibale A; Fanfoni A; Minissi F
    Org Lett; 2005 Apr; 7(9):1805-8. PubMed ID: 15844911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective domino ring-closing metathesis-cross-metathesis reactions between enynes and electron-deficient alkenes.
    Royer F; Vilain C; Elkaïm L; Grimaud L
    Org Lett; 2003 May; 5(11):2007-9. PubMed ID: 12762708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhodium-catalyzed formation of stereocontrolled trisubstituted alkenes from Baylis-Hillman adducts.
    Gendrineau T; Demoulin N; Navarre L; Genet JP; Darses S
    Chemistry; 2009; 15(18):4710-5. PubMed ID: 19301332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A materials approach to site-isolation of Grubbs catalysts from incompatible solvents and m-chloroperoxybenzoic acid.
    Mwangi MT; Runge MB; Hoak KM; Schulz MD; Bowden NB
    Chemistry; 2008; 14(22):6780-8. PubMed ID: 18563767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring new synthetic strategies in the development of a chemically activated Ru-based olefin metathesis catalyst.
    Ledoux N; Drozdzak R; Allaert B; Linden A; Van Der Voort P; Verpoort F
    Dalton Trans; 2007 Nov; (44):5201-10. PubMed ID: 17985028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ruthenium-catalyzed tandem olefin metathesis-oxidations.
    Scholte AA; An MH; Snapper ML
    Org Lett; 2006 Oct; 8(21):4759-62. PubMed ID: 17020296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ESIMS studies and calculations on alkali-metal adduct ions of ruthenium olefin metathesis catalysts and their catalytic activity in metathesis reactions.
    Wang HY; Yim WL; Klüner T; Metzger JO
    Chemistry; 2009 Oct; 15(41):10948-59. PubMed ID: 19760711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect.
    Garbacia S; Desai B; Lavastre O; Kappe CO
    J Org Chem; 2003 Nov; 68(23):9136-9. PubMed ID: 14604397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ring-closing olefin metathesis on ruthenium carbene complexes: model DFT study of stereochemistry.
    Vyboishchikov SF; Thiel W
    Chemistry; 2005 Jun; 11(13):3921-35. PubMed ID: 15838859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction.
    Ornelas C; Méry D; Cloutet E; Ruiz Aranzaes J; Astruc D
    J Am Chem Soc; 2008 Jan; 130(4):1495-506. PubMed ID: 18177046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New strategy for the total synthesis of macrosphelides a and B based on ring-closing metathesis.
    Matsuya Y; Kawaguchi T; Nemoto H
    Org Lett; 2003 Aug; 5(16):2939-41. PubMed ID: 12889913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross enyne metathesis of para-substituted styrenes: a kinetic study of enyne metathesis.
    Giessert AJ; Diver ST
    Org Lett; 2005 Jan; 7(2):351-4. PubMed ID: 15646995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attractive noncovalent interactions in the mechanism of grubbs second-generation Ru catalysts for olefin metathesis.
    Zhao Y; Truhlar DG
    Org Lett; 2007 May; 9(10):1967-70. PubMed ID: 17428063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using cross-metathesis to couple L-phenylalanine to a macrocyclic lactam.
    Enholm E; Low T
    J Org Chem; 2006 Mar; 71(6):2272-6. PubMed ID: 16526773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced fine-tuning of grubbs/hoveyda olefin metathesis catalysts: a further step toward an optimum balance between antinomic properties.
    Bieniek M; Bujok R; Cabaj M; Lugan N; Lavigne G; Arlt D; Grela K
    J Am Chem Soc; 2006 Oct; 128(42):13652-3. PubMed ID: 17044669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic insights into ring-closing enyne metathesis with the second-generation Grubbs-Hoveyda catalyst: a DFT study.
    Nuñez-Zarur F; Solans-Monfort X; Rodríguez-Santiago L; Pleixats R; Sodupe M
    Chemistry; 2011 Jun; 17(27):7506-20. PubMed ID: 21618621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly chemo- and stereoselective intermolecular coupling of diazoacetates to give cis-olefins by using Grubbs second-generation catalyst.
    Hodgson DM; Angrish D
    Chemistry; 2007; 13(12):3470-9. PubMed ID: 17290472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.