BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15355717)

  • 1. [Application and advance of benchmark dose on risk assessment].
    Tian L; Lu XT; Jin TY
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2004 Aug; 22(4):290-2. PubMed ID: 15355717
    [No Abstract]   [Full Text] [Related]  

  • 2. The benchmark dose method--review of available models, and recommendations for application in health risk assessment.
    Filipsson AF; Sand S; Nilsson J; Victorin K
    Crit Rev Toxicol; 2003; 33(5):505-42. PubMed ID: 14594105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data.
    Zhu Y; Wang T; Jelsovsky JZ
    Risk Anal; 2007 Apr; 27(2):447-65. PubMed ID: 17511711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uses of benchmark dose methodology in quantitative risk assessment.
    Starr TB; Goodman JI; Hoel DG
    Regul Toxicol Pharmacol; 2005 Jun; 42(1):1-2. PubMed ID: 15896437
    [No Abstract]   [Full Text] [Related]  

  • 5. A comparison of microbial dose-response models fitted to human data.
    Moon H; Chen JJ; Gaylor DW; Kodell RL
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):177-84. PubMed ID: 15450720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormesis gets massive data support.
    Renner R
    Environ Sci Technol; 2006 Nov; 40(21):6525-6. PubMed ID: 17144269
    [No Abstract]   [Full Text] [Related]  

  • 7. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences.
    Calabrese EJ
    Environ Pollut; 2005 Dec; 138(3):379-411. PubMed ID: 16098930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints.
    Sand S; von Rosen D; Victorin K; Filipsson AF
    Toxicol Sci; 2006 Mar; 90(1):241-51. PubMed ID: 16322076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The current state of knowledge on the use of the benchmark dose concept in risk assessment.
    Sand S; Victorin K; Filipsson AF
    J Appl Toxicol; 2008 May; 28(4):405-21. PubMed ID: 17879232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplicity-adjusted inferences in risk assessment: benchmark analysis with quantal response data.
    Nitcheva DK; Piegorsch WW; West RW; Kodell RL
    Biometrics; 2005 Mar; 61(1):277-86. PubMed ID: 15737104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The benchmark dose approach in food risk assessment: is it applicable and worthwhile?
    Muri SD; Schlatter JR; Brüschweiler BJ
    Food Chem Toxicol; 2009 Dec; 47(12):2906-25. PubMed ID: 19682530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the standard deviation in the estimation of benchmark doses with continuous data.
    Gaylor DW; Slikker W
    Risk Anal; 2004 Dec; 24(6):1683-7. PubMed ID: 15660621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism-based cancer risk assessment for 1,4-dichlorobenzene.
    Butterworth BE; Aylward LL; Hays SM
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):138-48. PubMed ID: 17688981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic framework for non-cancer risk assessment.
    Chen JJ; Moon H; Kodell RL
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):45-50. PubMed ID: 17166641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing experimental designs for benchmark dose calculations for continuous endpoints.
    Kuljus K; von Rosen D; Sand S; Victorin K
    Risk Anal; 2006 Aug; 26(4):1031-43. PubMed ID: 16948695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The no-observed-adverse-effect-level in drug safety evaluations: use, issues, and definition(s).
    Dorato MA; Engelhardt JA
    Regul Toxicol Pharmacol; 2005 Aug; 42(3):265-74. PubMed ID: 15979222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incidence and severity in relation to magnitude of intake above the ADI or TDI: use of critical effect data.
    Renwick AG
    Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S79-86. PubMed ID: 10597618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical analysis of methods for assessment of predicted no-effect concentration.
    Roman G; Isnard P; Jouany J
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):117-25. PubMed ID: 10375413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an occupational exposure limit for n-propylbromide using benchmark dose methods.
    Stelljes ME; Wood RR
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):136-50. PubMed ID: 15450717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.