These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 15355854)

  • 1. The molecular basis of skeletal muscle atrophy.
    Jackman RW; Kandarian SC
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C834-43. PubMed ID: 15355854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy.
    Suetta C; Frandsen U; Jensen L; Jensen MM; Jespersen JG; Hvid LG; Bayer M; Petersson SJ; Schrøder HD; Andersen JL; Heinemeier KM; Aagaard P; Schjerling P; Kjaer M
    PLoS One; 2012; 7(12):e51238. PubMed ID: 23284670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.
    Jones SW; Hill RJ; Krasney PA; O'Conner B; Peirce N; Greenhaff PL
    FASEB J; 2004 Jun; 18(9):1025-7. PubMed ID: 15084522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling mechanisms involved in disuse muscle atrophy.
    Zhang P; Chen X; Fan M
    Med Hypotheses; 2007; 69(2):310-21. PubMed ID: 17376604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular signaling during skeletal muscle atrophy.
    Kandarian SC; Jackman RW
    Muscle Nerve; 2006 Feb; 33(2):155-65. PubMed ID: 16228971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear factor-kappa B signaling in skeletal muscle atrophy.
    Li H; Malhotra S; Kumar A
    J Mol Med (Berl); 2008 Oct; 86(10):1113-26. PubMed ID: 18574572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C
    Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular events in skeletal muscle during disuse atrophy.
    Kandarian SC; Stevenson EJ
    Exerc Sport Sci Rev; 2002 Jul; 30(3):111-6. PubMed ID: 12150569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular signaling pathways regulating muscle proteolysis during atrophy.
    Franch HA; Price SR
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):271-5. PubMed ID: 15809529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy.
    Jackman RW; Wu CL; Kandarian SC
    PLoS One; 2012; 7(12):e51478. PubMed ID: 23251550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures.
    Chopard A; Hillock S; Jasmin BJ
    J Cell Mol Med; 2009 Sep; 13(9B):3032-50. PubMed ID: 19656243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle apoptotic response to denervation, disuse, and aging.
    Siu PM
    Med Sci Sports Exerc; 2009 Oct; 41(10):1876-86. PubMed ID: 19727026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of disuse muscle atrophy: role of oxidative stress.
    Powers SK; Kavazis AN; DeRuisseau KC
    Am J Physiol Regul Integr Comp Physiol; 2005 Feb; 288(2):R337-44. PubMed ID: 15637170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 20. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy.
    Judge AR; Koncarevic A; Hunter RB; Liou HC; Jackman RW; Kandarian SC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C372-82. PubMed ID: 16928772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.