BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15355866)

  • 1. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials.
    McLaughlin JE; Boyer JS
    Ann Bot; 2004 Nov; 94(5):675-89. PubMed ID: 15355866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems.
    McLaughlin JE; Boyer JS
    Ann Bot; 2004 Jul; 94(1):75-86. PubMed ID: 15159218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch and the control of kernel number in maize at low water potentials.
    Zinselmeier C; Jeong BR; Boyer JS
    Plant Physiol; 1999 Sep; 121(1):25-36. PubMed ID: 10482657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and quantifying carbohydrate transport to the developing ovaries of maize.
    Mäkelä P; McLaughlin JE; Boyer JS
    Ann Bot; 2005 Oct; 96(5):939-49. PubMed ID: 16100223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize.
    Andersen MN; Asch F; Wu Y; Jensen CR; Naested H; Mogensen VO; Koch KE
    Plant Physiol; 2002 Oct; 130(2):591-604. PubMed ID: 12376627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain yields with limited water.
    Boyer JS; Westgate ME
    J Exp Bot; 2004 Nov; 55(407):2385-94. PubMed ID: 15286147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucrose feeding reverses shade-induced kernel losses in maize.
    Hiyane R; Hiyane S; Tang AC; Boyer JS
    Ann Bot; 2010 Sep; 106(3):395-403. PubMed ID: 20616114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels.
    LeClere S; Schmelz EA; Chourey PS
    Phytochemistry; 2008 Feb; 69(3):692-9. PubMed ID: 17964617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation.
    Yu J; Han J; Wang R; Li X
    Planta; 2016 Jul; 244(1):111-24. PubMed ID: 26979324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic control of cell wall invertases in developing endosperm of maize.
    Chourey PS; Jain M; Li QB; Carlson SJ
    Planta; 2006 Jan; 223(2):159-67. PubMed ID: 16025339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize.
    Chourey PS; Li QB; Kumar D
    Mol Plant; 2010 Nov; 3(6):1026-36. PubMed ID: 20924026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit.
    Yu LX; Setter TL
    Plant Physiol; 2003 Feb; 131(2):568-82. PubMed ID: 12586881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels.
    LeCLere S; Schmelz EA; Chourey PS
    Plant Physiol; 2010 May; 153(1):306-18. PubMed ID: 20237017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize.
    Chourey PS; Li QB; Cevallos-Cevallos J
    Plant Sci; 2012 Mar; 184():45-53. PubMed ID: 22284709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development.
    Bate NJ; Niu X; Wang Y; Reimann KS; Helentjaris TG
    Plant Physiol; 2004 Jan; 134(1):246-54. PubMed ID: 14657403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.
    Guo X; Duan X; Wu Y; Cheng J; Zhang J; Zhang H; Li B
    J Agric Food Chem; 2018 Feb; 66(7):1670-1677. PubMed ID: 29394054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize.
    Thévenot C; Simond-Côte E; Reyss A; Manicacci D; Trouverie J; Le Guilloux M; Ginhoux V; Sidicina F; Prioul JL
    J Exp Bot; 2005 Mar; 56(413):945-58. PubMed ID: 15710637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat.
    Koonjul PK; Minhas JS; Nunes C; Sheoran IS; Saini HS
    J Exp Bot; 2005 Jan; 56(409):179-90. PubMed ID: 15533880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.
    Wiberley-Bradford AE; Busse JS; Jiang J; Bethke PC
    BMC Res Notes; 2014 Nov; 7():801. PubMed ID: 25399251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.