These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 15355962)

  • 1. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator.
    Grohmanova K; Schlaepfer D; Hess D; Gutierrez P; Beck M; Kroschewski R
    J Biol Chem; 2004 Nov; 279(47):48495-504. PubMed ID: 15355962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes.
    Owen D; Campbell LJ; Littlefield K; Evetts KA; Li Z; Sacks DB; Lowe PN; Mott HR
    J Biol Chem; 2008 Jan; 283(3):1692-1704. PubMed ID: 17984089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The receptor protein-tyrosine phosphatase PTPmu interacts with IQGAP1.
    Phillips-Mason PJ; Gates TJ; Major DL; Sacks DB; Brady-Kalnay SM
    J Biol Chem; 2006 Feb; 281(8):4903-10. PubMed ID: 16380380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration.
    Watanabe T; Wang S; Noritake J; Sato K; Fukata M; Takefuji M; Nakagawa M; Izumi N; Akiyama T; Kaibuchi K
    Dev Cell; 2004 Dec; 7(6):871-83. PubMed ID: 15572129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IQGAP1 Interaction with RHO Family Proteins Revisited: KINETIC AND EQUILIBRIUM EVIDENCE FOR MULTIPLE DISTINCT BINDING SITES.
    Nouri K; Fansa EK; Amin E; Dvorsky R; Gremer L; Willbold D; Schmitt L; Timson DJ; Ahmadian MR
    J Biol Chem; 2016 Dec; 291(51):26364-26376. PubMed ID: 27815503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs.
    LeCour L; Boyapati VK; Liu J; Li Z; Sacks DB; Worthylake DK
    Structure; 2016 Sep; 24(9):1499-508. PubMed ID: 27524202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cdc42 mutant specifically activated by intersectin.
    Smith WJ; Hamel B; Yohe ME; Sondek J; Cerione RA; Snyder JT
    Biochemistry; 2005 Oct; 44(40):13282-90. PubMed ID: 16201754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2.
    McCallum SJ; Wu WJ; Cerione RA
    J Biol Chem; 1996 Sep; 271(36):21732-7. PubMed ID: 8702968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitination of the scaffold protein IQGAP1 diminishes its interaction with and activation of the Rho GTPase CDC42.
    Gorisse L; Li Z; Wagner CD; Worthylake DK; Zappacosta F; Hedman AC; Annan RS; Sacks DB
    J Biol Chem; 2020 Apr; 295(15):4822-4835. PubMed ID: 32094223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK.
    Miyamoto Y; Yamauchi J; Itoh H
    J Biol Chem; 2003 Aug; 278(32):29890-900. PubMed ID: 12771149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2.
    Ozdemir ES; Jang H; Gursoy A; Keskin O; Li Z; Sacks DB; Nussinov R
    J Biol Chem; 2018 Mar; 293(10):3685-3699. PubMed ID: 29358323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant.
    Debreceni B; Gao Y; Guo F; Zhu K; Jia B; Zheng Y
    J Biol Chem; 2004 Jan; 279(5):3777-86. PubMed ID: 14597635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1, and Cdc42.
    Brown MD; Bry L; Li Z; Sacks DB
    J Biol Chem; 2007 Oct; 282(41):30265-72. PubMed ID: 17693642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration.
    Casteel DE; Turner S; Schwappacher R; Rangaswami H; Su-Yuo J; Zhuang S; Boss GR; Pilz RB
    J Biol Chem; 2012 Nov; 287(45):38367-78. PubMed ID: 22992742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ph(-) myeloproliferative neoplasm red blood cells display deregulation of IQGAP1-Rho GTPase signaling depending on CALR/JAK2 status.
    Socoro-Yuste N; Dagher MC; Gonzalez De Peredo A; Mondet J; Zaccaria A; Roux Dalvai F; Plo I; Cahn JY; Mossuz P
    Biochim Biophys Acta; 2016 Nov; 1863(11):2758-2765. PubMed ID: 27566291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins.
    Joberty G; Perlungher RR; Macara IG
    Mol Cell Biol; 1999 Oct; 19(10):6585-97. PubMed ID: 10490598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression.
    Bourguignon LY; Gilad E; Rothman K; Peyrollier K
    J Biol Chem; 2005 Mar; 280(12):11961-72. PubMed ID: 15655247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.